bob tran
- 17
- 0
Homework Statement
In the figure, a 700-kg crate is on a rough surface inclined at 30°. A constant external force P = 5600 N is applied horizontally to the crate. As the force pushes the crate a distance of 3.00 m up the incline, the speed changes from 1.40 m/s to 2.50 m/s. How much work does gravity do on the crate during this process?
Homework Equations
<br /> W=KE_f - KE_i\\<br /> W=Fd\cos{\theta}<br />
The Attempt at a Solution
<br /> W=KE_f - KE_i<br /> W_{total}=\frac{1}{2}mv^2_f - \frac{1}{2}mv^2_i\\<br /> W_{total}=\frac{1}{2}m(v^2_f-v^2_i)\\<br /> W_{total}=\frac{1}{2}(700)(2.5^2-1.4^2)\\<br /> W_{total}=1501.5 \ \texttt{J}\\ \ \\<br /> W=Pd\cos{\theta}\\<br /> W=5600(3)\cos{30}\\<br /> W=14549.2 \ \texttt{J}\\ \ \\<br /> W_{total}=W_g+W\\<br /> W_g=W_{total}-W\\<br /> W_g=1501.5-14549.2\\<br /> W_g=-13047.7 \ \texttt{J}<br />
The correct answer is -10300 \ \texttt{J}. I am not sure how I would incorporate friction (if at all).