First derivative of the legendre polynomials

kilojoules
Messages
5
Reaction score
0
show that the first derivative of the legendre polynomials satisfy a self-adjoint differential equation with eigenvalue λ=n(n+1)-2


The attempt at a solution:

(1-x^2 ) P_n^''-2xP_n^'=λP_n
λ = n(n + 1) - 2 and (1-x^2 ) P_n^''-2xP_n^'=nP_(n-1)^'-nP_n-nxP_n^'
∴nP_(n-1)^'-nP_n-nxP_n^'=( n(n + 1) - 2 )P_n
For n=2
2P_1^'-2P_2-2xP_2^'=4P_n
Using legendre polynomial properties we have
-9x^2+2x+1=2(3x^2-1)
∴-15x^2+2x+3=0
I don’t know what to do from here.
 
Physics news on Phys.org
Did you consider just replacing the first derivative with just "y" so that the equation becomes
(1- x^2)y'- 2xy= \lambda P_n
Differentiating
(1- x^2)y''- 4xy'- 2y= \lambda P_n'= \lambda y

(1- x^2)y''- 4xy'= (2+ \lambda)y
 
Thanks Hallsofvy
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top