Flow of a Newtonian fluid down an inclined plane.

AI Thread Summary
The discussion focuses on the velocity profile of laminar flow for a Newtonian fluid on an inclined plane, emphasizing the assumptions of incompressibility and fully developed flow. The participants analyze the forces acting on an infinitesimal control volume, particularly the balance of momentum flux and accumulation. A key point of contention is the constancy of pressure at a free liquid surface, with clarification that while pressure is atmospheric at the surface, it varies along the streamlines due to hydrostatic equilibrium. The discussion concludes that pressure remains constant along streamlines but is influenced by gravitational acceleration in the normal direction to the incline. Understanding these dynamics is crucial for accurately modeling fluid behavior in inclined planes.
siddharth
Homework Helper
Gold Member
Messages
1,142
Reaction score
0
I'm basically reading on how the velocity profile is found for a laminar flow of a Newtonian fluid down an inclined plane surface. (x is along the incline, y is perpendicular to the incline)

The assumptions being made are
- The fluid is Newtonian
- It's laminar
- It's fully developed
- It's incompressible

What the book did, was to take an infinitesimal control volume, find the forces acting on it, and equate it to the sum of the linear momentum flux and rate of accumulation of momentum in the c.v (along the x-direction)

I understand how the sum of the flux and the accumulation is zero. Next, the book evaluates the forces.
It says,

\sum F_x = P \Delta y|_x - P \Delta y|_{x+\Delta x} + \tau_{yx} \Delta x|_{y+\Delta y} - \tau_{yx} \Delta x|_y + \rho g \Delta x \Delta y \sin \theta

which I understand.

Then it says
Note that the pressure-force terms also cancel because of the presence of a free liquid surfaces.

This is what I don't understand. Why should the pressure be constant for a free liquid surface? For example, if we take a fluid between two cylinders, and rotate the inner cylinder (and make the same assumptions), then the centrifugal force (you know what I mean) would cause a pressure gradient along the radial direction. So, even at the free surface at the top, the pressure won't be constant.
 
Last edited:
Engineering news on Phys.org
Free liquid surfaces means it is at atm pressure, ie. zero pressure gauge.
 
Ouch. Yeah, it's kinda obvious now :blushing:
 
Last edited:
siddharth said:
w For example, if we take a fluid between two cylinders, and rotate the inner cylinder (and make the same assumptions), then the centrifugal force (you know what I mean) would cause a pressure gradient along the radial direction. So, even at the free surface at the top, the pressure won't be constant.

That's not true. If you leave the top open, as Cyrus said, the pressure is the atmospheric one at the top of the upmost film. The centrifugal force will curve the shape of the surface as it were a paraboloid, such that the hydrostatic pressure balances the centrifugal overpressure generated.

In your problem, the book should say that pressure is consant along the streamlines, but it is holding hydrostatic equilibrium normal to the plane, but instead with the gravitational acceleration g, with gcos\theta. So it is not uniform in the normal direction to the plane.
 
Clausius2 said:
That's not true. If you leave the top open, as Cyrus said, the pressure is the atmospheric one at the top of the upmost film. The centrifugal force will curve the shape of the surface as it were a paraboloid, such that the hydrostatic pressure balances the centrifugal overpressure generated.

In your problem, the book should say that pressure is consant along the streamlines, but it is holding hydrostatic equilibrium normal to the plane, but instead with the gravitational acceleration g, with gcos\theta. So it is not uniform in the normal direction to the plane.

Yeah, I get it. Thanks
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top