Formula for the harmonic oscillator is f"(x)+W^2 * X(t)=0

AI Thread Summary
The harmonic oscillator's equation f"(x) + W^2 * X(t) = 0 derives from Newton's second law applied to a mass-spring system. The forces acting on the mass include the inertial force (F1 = ma) and the spring's restoring force (F2 = -kx). Setting these forces equal results in the equation ma + kx = 0, which simplifies to mx"(t) + kx = 0. Dividing by m leads to the standard form x"(t) + (k/m)x = 0, where the angular frequency w is defined as w = sqrt(k/m). Substituting w^2 into the equation confirms the harmonic oscillator's standard form, demonstrating the relationship between mass, spring constant, and oscillation.
Chiara
can anyboy show to me why the formula for the harmonic oscillator is f"(x)+W^2 * X(t)=0. Please I spent a whole afternoon trying to figure it out and I just wasted my time.
Thanks
 
Physics news on Phys.org
Hopefully i can get this right.

Using the example of a mass and spring oscillator. By Newton's £rd Law the forces on the spring are equal. The forces on the spring are the force on the mass (F1=ma) and the resistive force on the spring
(F2+-kx, negative because it is resitive and opposite to F1=ma)

Therefore

F1=F2
ma=-kx
ma+kx=0

By definition a= x"(t)

So mx"(t)+ kx=0
Dividing by m gives x"(t)+(k/m)x=0

The standard equation for the period of oscillation (T) of a mass spring
pendulum is

T = (2(Pi))sqrt(m/K)

omega= w = (2(Pi))/T = 2(pi)/((2(Pi))sqrt(m/K))

The 2(pi) should cancel and leave you with w = sqrt(K/m)
Squaring both sides gives w^2=(K/m)

Substitute this into the above equation and get

x"(t) + (w^2)x = 0

I hope that's understandable as I never tried writing such an equation in pure text before. Hope it works and helps.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top