Frictional force acting on mass

AI Thread Summary
A 40 kg block sliding down a rough incline at 35 degrees with constant velocity experiences a frictional force that balances the gravitational component acting down the slope. The gravitational force components were calculated as Fgx = 224.8 N and Fgy = 321.1 N. Since the block moves at constant velocity, the net force along the incline is zero, leading to the equation mgsin(theta) - F_k = 0. This results in the frictional force F_k equaling 224.8 N, acting up the incline. Understanding that the forces balance due to zero acceleration clarifies the problem.
demonslayer42
Messages
18
Reaction score
0

Homework Statement


A 40 kg block slides down arough incline of 35 degrees with a constant velocity. Find the frictional force acting on the block.


Homework Equations


Fgx = Fg sin theta
Fgy = Fg cos theta
Fg = mg

The Attempt at a Solution


Well I drew a diagram and solved for my Fgx component and my Fgy component:

Fgx = 40(9.8)sin35 = 224.8 N
Fgy = 40(9.8)cos35 = 321.1 N

Now what do I do? Take the sum of Fx ? Won't that just be 224.8 N ? That doesn't sound correct I'm confused. Am I doing something wrong?
 
Physics news on Phys.org
But I can't take the sum of Fx because I don't have an acceleration. I'm stuck :(
 
There is no acceleration along the incline, the acceleration is zero along the incline when the block is moving at constant velocity along the incline. Looks like Newton 1 applies.
 
That's what I was thinking, but if the a = 0 because it's at a constant velocity wouldn't that just mean the sum of my Fx would be 224.8 N ? So in this case Fx = fs ?Is this correct?
 
demonslayer42 said:
That's what I was thinking, but if the a = 0 because it's at a constant velocity wouldn't that just mean the sum of my Fx would be 224.8 N ?
the sum of your Forces in x direction (parallel to incline) would be 0 (no net force per Newton 1)!
So in this case Fx = fs ?Is this correct?
It's sum of forces (also called F_net) along incline = 0. Thus

mgsin theta (which is the component of the gravity force acting down the plane) - F_k (which is the kinetic friction force acting up the plane) = 0.

224.8 - F_k =0

F_k = 224.8 N acting up the incline and parallel to it.

Which i think it what you meant.
 
Yes, you are right that's what I meant. O.k., I think I'm starting to get the hang of this now thank you.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.

Similar threads

Replies
7
Views
3K
Replies
2
Views
1K
Replies
9
Views
5K
Replies
6
Views
11K
Replies
7
Views
3K
Replies
11
Views
7K
Replies
3
Views
2K
Back
Top