From that its true that B=0"Solving Steady Temperature on a Flat Plate

inferno298
Messages
25
Reaction score
0

Homework Statement



A flat plate lies in the region:
0<x<35, 0<y<inf

The temperature is steady (not changing with time), and the
boundary conditions are:
T = { x if 0<x<35; y=0
70-x if 35<x<70; y=0
0 if x=0
0 if x=70 }

Enter the temperature at (x = 42, y = 21)

Homework Equations



heat equation in 2-d : (d^2T/dx^2)+(d^2T/dy^2)=0


The Attempt at a Solution



So I non dimensionalized it and solved it down to:
X=A*cos(k*x)+B*cos(k*x)
Y=C*e^(k*y)+D*e^(-k*y)
T=X*Y

So I solved at the boundary conditions, first one being T(x=0)=0
From that its true that A must = 0, so X=B*cos(k*x)
and T = B*cos(k*x)*(C*e^(k*y)+D*e^(-k*y))

Second boundary condition is T(x=70)=0
 
Physics news on Phys.org
didn't mean to post it yet.
second boundary condition is T(x=70)=0,
there fore sin(kx) must be an interger multiple of pi so I don't zero old my whole solution.
Now I have T = (C*e^(k*y)+D*e^(-k*y))+Summation(1->inf)(B*cos(n*pi*x)

So I am having trouble figuring out the boundary conditions for the other two piecewise functions, and dealing with the upper boundary of y being inf. any help would be very appreciated.
 
nvm I solved it myself, anyone interested in learning how to solve the heat equation for semi finite plates with steady temp let me know
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top