Thanks! What I've done is the following (could you please tell me if I'm right

?)
So I did what you told me to: took a small portion of arc length ds_1 on the upper semicircle and because s_1=r \theta this leads to ds_1 = r d \theta. Therefore: dq_1=\lambda ds_1= r \lambda_0 sin \theta d \theta. (\theta is positive because it's the upper semicircle, therefore the sine is positive too and the charge as well).
I also took a small portion of arc length ds_2 facing ds_1 which has a charge of dq_2=\lambda ds_2= - r \lambda_0 sin \theta d \theta (\theta is negative because it's the lower semicircle, therefore the sine is also negative and the charge as well).
Next I split the problem of finding E in four parts:
first I'll find d E_x_1 for dq_1 on the upper semicircle and integrate over the whole semi circle in order to find the total E_x_1 caused by the upper part.(1)
Then I'll find d E_x_2 for dq_2 on the lower semicircle and integrate over the whole semi circle in order to find the total E_x_2 caused by the upper part. Then I'll add them in order to find the total E_x in the center of the circle. (2)
I'll do the same for d E_y_1 (3) and d E_y_2 (4) in order to get to E_y_1 and E_y_2 providing E_y when added.
(1) dE_x_1 = \frac{k dq_1}{r^2} cos \theta = \frac{k r \lambda_0 sin \theta d \theta}{r^2} cos \theta =\frac{k \lambda_0}{r} sin \theta cos \theta d \theta
E_x_1= \int_{-\pi/2}^{\pi/2} \frac{k \lambda_0}{r} sin \theta cos \theta d \theta = \frac{k \lambda_0}{r} \int_{-\pi/2}^{\pi/2} sin \theta cos \theta d \theta = \frac{k \lambda_0}{r} \left[ \frac{1}{2}(sin\theta)^2 \right]_{-\pi/2}^{\pi/2}= \frac{k \lambda_0}{r} (\frac{1}{2} -\frac{1}{2})=0
(2) dE_x_2 = \frac{k dq_2}{r^2} cos (-\theta) = \frac{-k r \lambda_0 sin \theta d \theta}{r^2} cos \theta =\frac{-k \lambda_0}{r} sin \theta cos \theta d \theta
E_x_2= \int_{-\pi/2}^{\pi/2} \frac{-k \lambda_0}{r} sin \theta cos \theta d \theta = \frac{-k \lambda_0}{r} \int_{-\pi/2}^{\pi/2} sin \theta cos \theta d \theta = \frac{-k \lambda_0}{r} \left[ \frac{1}{2}(sin\theta)^2 \right]_{-\pi/2}^{\pi/2}= \frac{-k \lambda_0}{r} (\frac{1}{2} -\frac{1}{2})=0
Therefore E_x_1 + E_x_2 = 0+0 = 0 so there is no x component of E in the center of the ring.
(3) dE_y_1 = \frac{k dq_1}{r^2} sin \theta = \frac{k r \lambda_0 sin \theta d \theta}{r^2} sin \theta =\frac{k \lambda_0}{r} sin^2 \theta d\theta
E_y_1= \int_{-\pi/2}^{\pi/2} \frac{k \lambda_0}{r} sin^2 \theta d \theta = \frac{k \lambda_0}{r} \int_{-\pi/2}^{\pi/2} sin^2 \theta d \theta = \frac{k \lambda_0}{r} \left[ \frac{1}{2} \theta - \frac{1}{4}(sin 2 \theta) \right]_{-\pi/2}^{\pi/2}= \frac{k \lambda_0}{r} (\frac{1}{4} +\frac{1}{4})= \frac{k \lambda_0 \pi}{2r}
(4) dE_y_2 = \frac{k dq_2}{r^2} sin -\theta = - \frac{k dq_2}{r^2} sin \theta = - \frac{- k r \lambda_0 sin \theta d \theta}{r^2} sin \theta = \frac{k r \lambda_0 sin \theta d \theta}{r^2} sin \theta = \frac{k \lambda_0}{r} sin^2 \theta d\theta
E_y_2= \int_{-\pi/2}^{\pi/2} \frac{k \lambda_0}{r} sin^2 \theta d \theta = \frac{k \lambda_0}{r} \int_{-\pi/2}^{\pi/2} sin^2 \theta d \theta = \frac{k \lambda_0}{r} \left[ \frac{1}{2} \theta - \frac{1}{4}(sin 2 \theta) \right]_{-\pi/2}^{\pi/2}= \frac{k \lambda_0}{r} (\frac{1}{4} +\frac{1}{4})= \frac{k \lambda_0 \pi}{2r}
Therefore E_y_1 + E_y_2 = \frac{k \lambda_0 \pi}{2r} + \frac{k \lambda_0 \pi}{2r} = \frac{k \lambda_0 \pi}{r} which is the total E_y component of E.
To shorten all of this: E has only a y-component (as expected) in the center of the ring... but is the formula I found the correct one?