I recently finished a homework assignment with the exceptions of the following:(adsbygoogle = window.adsbygoogle || []).push({});

1.) f(x) =x^3 - x^2 + x, show there is a number c such that f(c)=10.

f(x) can be equated to 10, but I'm not quite sure how to solve the equation from that point.

2.) Prove that the equation has at least one real root.

e^x = 2 - x

In order to understand this question, i attempted to carry the same procedure with another equation: y = x^2 + x + 2. If the discriminant is 0, then there is a single root. If the discriminant is <0, no roots, and >0, multiple roots. But the same procedure doesn't work with the above equation, or for cubics, quartics, etc.

3.) For what values of x is F continuous?

f(x) = [ 0 if x is rational, 1 if x is irrational

I understand that the function can never be continuous, since it oscillates between 0 and 1 infinitely. But can anyone clarify what the following text means:

http://mathworld.wolfram.com/images/equations/DirichletFunction/equation3.gif [Broken]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Functions, Continuity

**Physics Forums | Science Articles, Homework Help, Discussion**