Solving the Equation for Trace: Gamma Matrices Explained

Fr34k
Messages
19
Reaction score
0

Homework Statement


Solve the equation. What is it's trace?

Homework Equations


[STRIKE]k[/STRIKE] γμ γ5 [STRIKE]o[/STRIKE] γ\nu γ5

The Attempt at a Solution


I don't think this is reduced enough.
γμkμγ5γ\nuo\nuγ\nuγ5

trace: just got rid of gamma5 with anticommutation.
-Tr[γμkμγ\nuo\nuγ\nu]
 
Last edited:
Physics news on Phys.org
Fr34k said:

Homework Statement


Solve the equation. What is it's trace?

Homework Equations


[STRIKE]k[/STRIKE] γμ γ5 [STRIKE]o[/STRIKE] γ\nu γ5

You haven't posted an equation, you've posted an expression. You can't solve an expression.

The Attempt at a Solution


I don't think this is reduced enough.
γμkμγ5γ\nuo\nuγ\nuγ5

I see the same index, \nu, 3 times in this term, so it is not valid according to the rules of the Einstein summation convention.
 
My bad, you re right it is an expression. I should have said evaluate the expression or simplify or something similar.

As for index \nu. Doesn't [STRIKE]o[/STRIKE] =γ\nuo?
Would really appreciate some help here.
 
Fr34k said:
My bad, you re right it is an expression. I should have said evaluate the expression or simplify or something similar.

So the problem is to simplify the expression [strike]k[/strike] γμ γ5 [strike]o[/strike] γν γ5, and then find the trace? If so, are you given a particular space-time and metric (or Lagrangian)? Are k_{\nu} and o_{\nu} arbitrary vectors, or do they have some meaning here?

As for index \nu. Doesn't [STRIKE]o[/STRIKE] =γ\nuo?
Would really appreciate some help here.

Do you mean {\not}{o}=\gamma^{\nu}o_{\nu}, where o_{\nu} is some covariant vector in your spacetime? If so, then realize that there is an implied summation over the index \nu in the term \gamma^{\nu}o_{\nu}, according to the Einstein summation convention. This makes the \nu in this term a so-called "dummy" index which can be replaced with any other Greek index.

When you have something like {\not}{k}{\not}{o} and you want to write it in terms of the Dirac matrices and the covariant vectors, according to the Einstein summation convention, you should use a different index for each implied sum, so that it is clear which terms belong to which summation. For example, {\not}{k}{\not}{o}=\gamma^{\nu}k_{\nu}\gamma^{\nu}o_{\nu} is meaningless and incorrect, but {\not}{k}{\not}{o}=\gamma^{\mu}k_{\mu}\gamma^{\nu}o_{\nu} is correct and consistent with the Einstein summation convention. Likewise, you wouldn't write \gamma_{\nu}{\not}{k}=\gamma_{\nu} \gamma^{\nu} k_{\nu}, but rather you would use a dummy index that is not already used in the term like \mu, and write \gamma_{\nu}{\not}{k}=\gamma_{\nu} \gamma^{\mu} k_{\mu}

Now, that said, if this sort of index notation is not immediately clear to you, you should almost certainly brush up on your mathematics before trying to study spinors and Dirac matrices.
 
Last edited:
kγ and oν are just arbitrary vectors.

I think I kinda get this notation now.

As for mathematics behind I couldn't agree more. The problem is we (the students) first saw this kind of notation when actually studying scattering of Dirac particles and didn't really get much (or any) of the math behind it.

But thank you for clearing things out a bit.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top