Generating correlated random variables via gausssian copula

fignewtons
Messages
28
Reaction score
0

Homework Statement



I want to generate two random variables, one is normally distributed N ~N(10, 25) and the other one, E, is exponentially distributed with mean 1. I was not given a particular correlation coefficient.

Homework Equations


normal cdf, exponential cdf, inverse transform method.

The Attempt at a Solution


First I get two independent standard normals A, B.
Then I generate a correlated normal C, with unknown correlation coefficient p through a linear combination of A, B, C = pA + sqrt{1-p^2}B. To get N, I simply transform A such as N = 10 + 5A. Then I use the normal CDF to get the unif(0,1) variable corresponding with C, F(C) = U where U~unif(0,1). From inverse transform of exponential cdf, I get that E = -ln(1-U). Is this a correct approach? I am also not sure if given the information in the first two lines I could have inferred some correlation coefficient p.
 
Physics news on Phys.org
Yes that approach is correct. It is not possible to infer the correlation coefficient. The Gaussian copula is a one-parameter joint distribution of two uniform RVs, and that parameter is p. In this problem, any value of p in the range [-1,1] can be chosen, although the lecturer might think you were being a smart-alec if you chose 0, 1 or -1.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top