martinhiggs
- 22
- 0
Geodesic on a cylinder - have I done this correctly??
ds^{2} = a^{2}d\theta^{2} + dz^{2}
ds = \sqrt{a^{2}d\theta^{2} + dz^{2}}
\int\sqrt{a^{2} + dz'^{2}} d\theta = Min
E-L equation
df/dz - d/d\theta(df/dz') = 0
df/dz = 0,
d/d\theta[\frac{z'}{\sqrt{a^{2} + z'^{2}}}] = 0
Integrating gives:
\frac{z'}{\sqrt{a^{2} + z'^{2}}} = B
z' = B\sqrt{a^{2} + z'^{2}}
z = B \int\sqrt{a^{2} + z'^{2}}
I am now stuck, I should be able to get to:
z = b\theta + c (i think)
But I'm not sure how...
Have I made any mistakes??
Homework Statement
ds^{2} = a^{2}d\theta^{2} + dz^{2}
ds = \sqrt{a^{2}d\theta^{2} + dz^{2}}
\int\sqrt{a^{2} + dz'^{2}} d\theta = Min
E-L equation
df/dz - d/d\theta(df/dz') = 0
df/dz = 0,
d/d\theta[\frac{z'}{\sqrt{a^{2} + z'^{2}}}] = 0
Integrating gives:
\frac{z'}{\sqrt{a^{2} + z'^{2}}} = B
z' = B\sqrt{a^{2} + z'^{2}}
z = B \int\sqrt{a^{2} + z'^{2}}
I am now stuck, I should be able to get to:
z = b\theta + c (i think)
But I'm not sure how...
Have I made any mistakes??