Gravity-induced viscous flow around a cylinder

member 428835

Homework Statement


A viscous liquid with density and viscosity ##\rho## and ##\mu## respectively is discharged onto the upper surface of a cylinder with radius ##a## at a volume flow rate ##Q##. This is a gravity-driven flow, and it forms a film around the cylinder--see picture.

What is the thickness $h$ of the layer as a function ##\theta##, ##a##, ##\rho##, ##\mu##, ##g##, and ##Q##.

Homework Equations


Navier-Stokes
Continuity

The Attempt at a Solution


First off, let's assume the flow is incompressible and viscous-dominated, Newtonian, steady, 2-D, and that no pressure gradient is present. Then continuity and Navier-Stokes equations are $$\nabla \cdot \vec{V} = 0$$ and $$g\hat{j} = \nu \nabla^2 \vec{V}$$
Now if we adopt a cylindrical coordinate system where ##x=rcos\theta## and ##y=r\sin\theta## we have
$$\frac{1}{r}\frac{\partial (r u_r)}{\partial r}+\frac{1}{r}\frac{\partial u_\theta}{\partial \theta}=0$$ and
$$g(\sin\theta \hat{e_r}+\cos\theta \hat{e_\theta})=\nu \frac{1}{r}\frac{\partial}{\partial r}\left(r \frac{\partial \vec{V} }{\partial r} \right)+\frac{1}{r^2} \frac{\partial^2 \vec{V}}{\partial \theta^2}$$

where ##\vec{V} = u_\theta \hat{e_\theta}+u_r\hat{e_r}##. Boundary conditions would be no slip along the surface, ##\vec{V} = 0## at ##r=a##. Another would be no stress along the surface of the thin film. And lastly we would have some incoming velocity related to ##Q##, which would be the velocity at ##r=a,\theta=0##. Any ideas how to proceed?

Thanks so much!
 

Attachments

Physics news on Phys.org
I would start out by looking at flow down an inclined plane of constant angle, and seeing where that takes me. It's got to be a pretty good approximation for most angles on the cylinder.

Chet
 
Thanks for the response Chet! I did this but how can you extrapolate this to a cylinder?
 
A Google search turned up useful information about this problem .

Search on ' viscous thin film flow around a cylinder '
 
Last edited:
joshmccraney said:
Thanks for the response Chet! I did this but how can you extrapolate this to a cylinder?
If the thickness is varying very gradually with theta, it should give an accurate result locally, except for at the leading and trailing edges.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top