Groups of order 60 and elements of order 5

  • Thread starter Thread starter djxl
  • Start date Start date
  • Tags Tags
    Elements Groups
djxl
Messages
5
Reaction score
0

Homework Statement



Let G be a group with order \left| G \right| = 60. Assume that G is simple.

Now let H be the set of all elements that can be written as a product of elements of order 5 in G. Show that H is a normal subgroup of G. Then conclude that H = G

Homework Equations




The Attempt at a Solution



I started by proving that H acutally is a subgroup.

I've then shown that there are 6 Sylow-5 subgroups in G and that they are cyclic. I know that all the elements of order 5 are the generators of the Sylow-5 subgroups. But how I can use that to show that H is normal escapes me.

All help/hints appreciated :).
 
Physics news on Phys.org
Sylow, won't help you, I don't think - the elements of order 5 do not generate Sylow-5 subgroups. The product of two elements of order 5 is not necessarily an element of order 5 (or any power of 5).

H is trivially a subgroup - there is nothing to prove there. What about normality? This is straight forward - conjugation preserves order, and notice that

gxyg^{-1} = gxg^{1-}gyg^{-1}
 
Count the total number of elements in all the 5-sylow groups. Use that number to show that the subgroup must be normal
 
Thanks for the quick help. I understand the solution now o:).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top