Groups of order 60 and elements of order 5

  • Thread starter Thread starter djxl
  • Start date Start date
  • Tags Tags
    Elements Groups
djxl
Messages
5
Reaction score
0

Homework Statement



Let G be a group with order \left| G \right| = 60. Assume that G is simple.

Now let H be the set of all elements that can be written as a product of elements of order 5 in G. Show that H is a normal subgroup of G. Then conclude that H = G

Homework Equations




The Attempt at a Solution



I started by proving that H acutally is a subgroup.

I've then shown that there are 6 Sylow-5 subgroups in G and that they are cyclic. I know that all the elements of order 5 are the generators of the Sylow-5 subgroups. But how I can use that to show that H is normal escapes me.

All help/hints appreciated :).
 
Physics news on Phys.org
Sylow, won't help you, I don't think - the elements of order 5 do not generate Sylow-5 subgroups. The product of two elements of order 5 is not necessarily an element of order 5 (or any power of 5).

H is trivially a subgroup - there is nothing to prove there. What about normality? This is straight forward - conjugation preserves order, and notice that

gxyg^{-1} = gxg^{1-}gyg^{-1}
 
Count the total number of elements in all the 5-sylow groups. Use that number to show that the subgroup must be normal
 
Thanks for the quick help. I understand the solution now o:).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top