Hankel Functions: Exploring Real & Imaginary Arguments

  • Thread starter Thread starter rj_brown
  • Start date Start date
  • Tags Tags
    Functions
AI Thread Summary
The discussion focuses on the exploration of Hankel functions, particularly comparing those with real arguments to those with imaginary and complex arguments. The user seeks to understand the relationship between Hankel functions of imaginary arguments and Bessel functions, especially in the context of transforming Bessel equations into modified Bessel equations. They note that solutions to Bessel's equations can be expressed as linear combinations of Hankel functions and inquire if similar relationships hold for modified Bessel equations. The conversation highlights a lack of literature on this topic and encourages sharing of any relevant information or identities related to these functions. The user references key mathematical resources for further exploration of these concepts.
rj_brown
Messages
4
Reaction score
0
Hey guys!

Ok so this one's pretty far out there... I'm looking into a piece of work to do with Bessel functions and I'm trying to extend my work using Hankel functions... but there doesn't seem to be a great deal of literature out there so I was wondering if anyone had any experience of them.

I'm trying to look at comparing Hankel functions of real argument with Hankel functions of imaginary argument (or on an ambitious day ever Hankel functions of complex argument!).

I know that for real argument:
H_n^1 (x)=J_n (x) + iY_n (x) and H_n^2 (x)=J_n (x) - iY_n(x)

But is there an equivalence between H_n^1 (ix) and H_n^2 (ix) and Bessel functions?

I'm asking this because my work takes the Bessel equation and the modified Bessel equation. I know that you can transform the Bessel equation into the modified Bessel equation by the transform of x -> ix and that the solutions of Bessel's equation can be transformed in the same way to give the solutions of the modifed Bessel equation.

The solution of Bessel's equation can be written as a linear combination of the first and second Hankel functions and if these are of real argument then surely the solution of the modified Bessel equation will be given as a linear combination of first and second kind Hankel functions of imaginary argument.

I know this is all a bit long and contrived so sorry for going on, really I'm just looking for any info about Hankel functions of imaginary or complex argument and if they have corresponding Bessel functions.

Thanks guys!

(p.s. sorry about the equations, I have no clue about LaTeX)
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top