1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Hard integration problem (calc 2)

  1. Jul 14, 2010 #1


    User Avatar

    I've been going at this problem for at least 3 hours :cry:

    Just need to find the integral for:

    INTEGRAL(x^3e^x^2) / (x^2 + 1)^2 dx

    I've tried all kinds of different methods, filling up at 4 pages in my notebook! I think this is the closest I've gotten :confused:

    First I broke up the numerator so that it's: x^2xe^x^2
    Attempting to solve with u-substitution

    u = x^2 + 1
    x^2 = u - 1
    du = 2xdx
    1/2du = xdx

    1/2INTEGRAL((u-1)e^(u-1)) / (u^2) du

    And I don't know what to do from here, I don't feel like I'm on the right track. If anyone has a tip it would be much appreciated!
    Last edited: Jul 14, 2010
  2. jcsd
  3. Jul 14, 2010 #2
    Try letting u = x2; that way you don't have to work with (u - 1)eu - 1 and you get euu.
  4. Jul 14, 2010 #3


    User Avatar

    Hmm yeah that probably is the best choice, I tried it earlier but am still hitting a wall

    u = x^2
    du = 2xdx
    1/2du = xdx

    1/2INTEGRAL (Ue^U) / (U+1)^2 dU

    Can that be integrated? I've always been so bad at knowing when I can do something and when I can't, it kills me on tests.
  5. Jul 14, 2010 #4
    Looks like your only option now is integration by parts, seems like no other kinds of substitutions would help. You only have a few things to try with u, eu, and 1/(u + 1)2, shouldn't be too hard.
  6. Jul 14, 2010 #5


    User Avatar

    Thanks! I think I may have gotten it, not 100% sure though, got class soon so i'll find out then. Thanks again
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook