What Is the Coefficient of Performance of a Carnot Heat Pump?

AI Thread Summary
The discussion centers on the confusion surrounding the coefficient of performance (COP) of a Carnot heat pump, particularly in relation to the temperatures T_h and T_c. The COP is expressed as COP = Q_h / W, where W is the work input, and participants highlight the relationship between heat transfers Q_c and Q_h. There is a debate over the correct interpretation of the equations Q_c/Q_h = -T_c/T_h and Q_h/Q_c = T_h/T_c, with some noting they represent the same concept but differ in sign convention. Clarification is sought on the implications of these equations and the significance of the negative sign in the textbook's formulation. The discussion emphasizes the importance of understanding entropy variations in the context of ideal heat pump behavior.
~angel~
Messages
150
Reaction score
0
This question is killing me because I just can't seem to get it.

A heat pump is used to heat a house in winter; the inside radiators are at T_h and the outside heat exchanger is at T_c. If it is a perfect (e.g., Carnot cycle) heat pump, what is K_pump, its coefficient of performance?

Give your answer in terms of T_h and T_c.

According to the hints, you're meant to work out the efficiency of the pump in terms of Q_c and Q_h. I thought it was 1 + (Q_c/Q_h)...

The textbook states that Q_c/Q_h = - T_c/T_h, but in the hints, it states Q_h/Q_c = T_h/T_c.

I'm totally confused.

Please help.
 
Physics news on Phys.org
I don't know how to solve the problem, but I wanted to point out that Q_h/Q_c = T_h/T_c and Q_c/Q_h = T_c/T_h are the same equation written differently. I don't know what the negative symbolizes, but if it was left out, then it must be somewhat arbitrary in meaning.

Hope this helps, good luck.
 
It might be confusing with redundant data. The expression should be Qh/(Qh-Qc) or Th/(Th-Tc)
 
~angel~ said:
The textbook states that Q_c/Q_h = - T_c/T_h, but in the hints, it states Q_h/Q_c = T_h/T_c.

I'm totally confused.

Please help.

I would say this equation represents such an ideal behavior of a Carnot heat pump. Entropy variation of the system must be 0 for being a cyclic machine, and entropy variation of universe (system+surroundings must be also 0 for being a reversible machine). So that the variation of entropy of the surroundings must counterbalance each other (in each focus).

On the other hand you should be careful with the sign convention. Maybe the book refers to different sign convention in each sentence. I always take the absolute value of the heats and put externally the convenient sign.

Also be careful because the COP of a heat pump is defined as COP=Q_h/W.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top