I can't say I understand this cct and, as others, would be interested in the EMRFD source, if it gives some explanation. But my 2 cents, FWIW
https://www.physicsforums.com/attachments/227564
I'm struggling to see this as a Colpitts. It has two capacitors: but they're not in the right place. It's all very well to say that if we move things around a bit we could make it into a Colpitts, but ...? And are the values ok? At different positions of the tuning capacitor?
The whole of the left hand side is a two terminal device as far as the crystal is concerned, so it seems to me it must be a circuit which presents a negative resistance at the operating frequency. (That doesn't actually help me a lot, as I don't know anything about the design of negative resistances around a transistor. The only place I've seen it is with Gunn diodes and op-amp circuits.)
But, I do see references around to instability in emitter followers with a capacitive load. I can't find a detailed treatment of this (and I'm really not up to doing one myself !) but a
TI application note for a wideband buffer amp IC makes a fairly unambiguous comment re.emitter follower cct,
Compensation: The three buffer amplifiers are inherently stable in applications with resistive loads and adequate supply bypassing. However, oscillation may occur in cases where a capacitive load of 100 pF or more is present. A series input resistance of 50Ω–300Ω will prevent this oscillation by compensating the negative input-resistance seen as a result of the reflected capacitive load. All source, cathode, or emitter-followers are subject to this phenomenon which is a result of transit time through the active region of the devices.
Whether that helps us here or not, is another question.
We have a parallel LC emitter load. This will become capacitive above its resonant frequency. If that creates a negative resistance input impedance, then the crystal could oscillate at its serial resonant frequency.
If Michael and [Edit: change Anorlunda to Baluncore } are building or simulating this cct, maybe they can see from the data it generates, whether this is happening. It would seem to me that if it were the case, the LC circuit would need to have its nominal resonant frequency below that of the crystal.
If the cct is actually a VFO with a crystal filter on the output, as the QRP Home Builder article seems to suggest, presumably the VFO will continue to oscillate as it is tuned away from the crystal frequency, but the output will drop due to the crystal filter? There may be some "grid dip" effect in the VFO that would show up in the simulation?