How Do You Solve This Directional Derivative Problem?

sarahisme
Messages
64
Reaction score
0
Hello,

I am confused in as how to do this question :S... any help, pointers etc. would be great.

http://img87.imageshack.us/img87/637/picture4nd7.png

Thanks

sarah :)
 
Last edited by a moderator:
Physics news on Phys.org
Please show how you started and where you got stuck. Thanks.
 
will post it later, though i may be on the verge of a breakthrough! :D
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top