Help with a concrete question about the Franck-Hertz experiment

andreitta
Messages
7
Reaction score
0
I'm studying the Franck-Hertz experiment for my Quantum Physics class, and I don't see why the minimums for the graphic U_1 (accelerating voltage) vs I_a (collector intensity) increase. It seems logical, but I can't find a proper explanation.

If anyone could help me it would be great :)

Thanks a lot
 
Physics news on Phys.org
Hello! I'd like to give some hints in details.

1. The electric current $I$ at the collector is (micro mechanism):

I = n s e v

Here, $n$ is a constant relatively (depends on the material and temperature of the negative emitter), $e$ the constant of charge of an electron, $S$ a constant relatively (the cross section of the tube). Hence

I = I(v)

where $v$ is the independent variable, which is determined by the accelerating voltage in the tube, and the small decelerating voltage(U_2) near the destination collector.

2. The magnitudes of velocity of the electrons initially emitted are not the same, the electrons' emitting speeds form a Maxwell distribution, with one peak (most probably values). Some has the very speed (energy-eV) to be absorbed, while some not.

Now, let's turn to the $U_1$ vs $I_a$ graph.

1. Between a valley (on the left with smaller U_1) and a nearest peak on its right, the slope goes upwards and $I_a$ increases.
Because: Most electrons' speeds (energy) are improper to be absorbed. They keep accelerating. The larger $v$, the larger $I_a$.

2. As to the valleys, where most electrons' speeds are proper and therefore their energy are absorbed, and they could no longer go through the decelerating voltage(U_2) to arrive the collector. However, the minor proportion of the electrons don't suffer from the absorbing of kinematic energy, and could cross the decelerating voltage(U_2) to generate $I_a$ in the destination collector. At the valleys, it is this minor electrons, whose motion are not perturbed, that make a difference. Suppose that the proportion is relatively constant (for a not so long interval of U_1 where there are still several valleys and peaks), then $n(minor)$ is constant, then $I_a(valley)$ depends on $v(valley)$. Just as above, the larger $U_1$, the larger $I_a$ at the valleys. So, minimums increase, too.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top