Splice1108
- 2
- 0
Find y^{I} (sinxsecx)/1+xtanx The supplied answer is 1/(1+xtanx)^{2}
I got stuck with an extra x on top at the end. Where did I mess up at?
y^{I}(sinxsecx)/1+xtanx = [1+xtanx*f^{I}(sinxsecx)-sinxsecx*f^{I}(1+xtanx)]/(1+xtanx)^{2} = [1+xtanx((cos/1)*(1/cos))-((cos/1)*(1/cos))*(0-1*(-cos/sin))]/(1xtanx)^{2}=[1+x*(sinx/cosx)*(cosx/sinx)*(-1)+1]/(1+xtanx)^{2}=(1+(x)(1)(-1)+1)/(1+xtanx)^{2}
I realize how much of a mess it is. I suspect it's something very simple that I missed.
I got stuck with an extra x on top at the end. Where did I mess up at?
y^{I}(sinxsecx)/1+xtanx = [1+xtanx*f^{I}(sinxsecx)-sinxsecx*f^{I}(1+xtanx)]/(1+xtanx)^{2} = [1+xtanx((cos/1)*(1/cos))-((cos/1)*(1/cos))*(0-1*(-cos/sin))]/(1xtanx)^{2}=[1+x*(sinx/cosx)*(cosx/sinx)*(-1)+1]/(1+xtanx)^{2}=(1+(x)(1)(-1)+1)/(1+xtanx)^{2}
I realize how much of a mess it is. I suspect it's something very simple that I missed.
Last edited by a moderator: