Help with variable mass on a slope question

AI Thread Summary
An armoured car on a slope is analyzed after a missile is fired horizontally from it. The initial calculations suggest the car's velocity up the slope is around 1.8 m/s, with some variations in estimates due to the angle of the slope. Momentum conservation equations are used, but the directionality of the vectors complicates the calculations. Discussions highlight the need to consider both horizontal and vertical components of momentum, leading to differing conclusions about the car's final velocity. The final consensus indicates that the correct velocity, after factoring in the slope, is approximately 1.8 m/s.
Nate-2016
Messages
9
Reaction score
0

Homework Statement



An armoured car with a mass of 5 tonnes is located on a smooth plane which is inclined at an angle of tan-1 (5/12) to the horizontal as shown in Figure Q3. A missile of mass 15kg is fired horizontally from this armoured car at 650m/s. Determine the velocity with which the armoured car will begin to travel up the inclined plane.

upload_2016-5-12_11-12-12.png
[/B]

Homework Equations



I think that a momentum equation needs to be used, but I am not sure how to apply that equation to a slope.

The Attempt at a Solution



The answer to the question is 1.8m/s. The closest I have got to it is 1.9m/s. This is my attempt.

0 = mdv - Mv
dv+v = 650m/s
mdv = Mv
mx(650-v) = Mv
15x(650-v) = 5000v
v = (15x650) / (15+5000)
v = 1.94 m/s

At which point do I taken into consideration the angle of the slope?
 
Physics news on Phys.org
Whenever you choose.
When you draw up your equation, mdv = Mv, you are saying (I think?) that the momentum of the shell is equal to the momentum of the AC. Since v is a vector, you need to take the directions into account. But the shell is fired horizontally and the AC moves up the slope and you should take the angle into consideration here.
But you could consider momentum independently in horizontal and vertical directions. Then your equation is presumably looking only at the horizontal component of momentum and you have calculated the horizontal component of the AC velocity. So now you consider the slope.

I agree with your 1.95m/sec (I think you maybe got 1.96?) and I can see how someone might then get 1.8m/s by considering the slope, but I don't agree with that. I get 2.11m/sec for the AC velocity up the slope.
 
  • Like
Likes Nate-2016
Thank you for explaining that to me. I have now taken into consideration the angle of the slope at the very end of my equation.
My new equation is now

0 = mdv - Mv
dv+v = 650m/s
mdv = Mv
mx(650-v) = Mv
15x(650-v) = 5000v
v = (15x650) / (15+5000)
v = 1.94 m/s x cos(tan^1(5/12))
v = 1.79 or 1.8 m/s

Solved.
Really appreciate your help.
 
Yes. That's how I thought they got 1.8 m/s.
I hope a real physicist might take a look, because I don't believe that answer.
If 1.94m/s is the horizontal component of the AC velocity, then the velocity of the AC up the slope must be greater, in fact 1.95 / cos(tan-1(5/12)) or simply 1.95 x 13/12
If you were given the velocity of the AC up the slope, say 1m/s, then asked what were the horizontal and vertical components of its velocity, you'd get two smaller numbers (H=12/13 and v=5/13). So now you have its horizontal component, the actual velocity must be larger.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top