Horizontal component of gravity on inclined plane

Click For Summary
The discussion revolves around calculating the horizontal and vertical components of gravitational force acting on a block on an inclined plane. It is established that the force parallel to the plane is mg*sin(θ), while the perpendicular force is mg*cos(θ). The confusion arises in determining the horizontal component of the force, with some suggesting it should be mg*tan(θ) and others clarifying that it can be derived from the components of mg*cos(θ). The participants agree that understanding the relationship between the angles and the components is key to solving the problem. This clarification helps in visualizing the forces acting on the block in relation to both the incline and the horizontal plane.
chudd88
Messages
23
Reaction score
1
I'm working on a problem in which a block sits on an inclined plane of angle @ above the horizontal. Assuming there is no friction, the block will slide down the plane with a force of mg*sin(@). The trouble I'm having is figuring out the horizontal and vertical components of that force.

Intuitively, I feel like the horizontal force should be mg*sin(@)*cos(@). My reasoning is that the mg*sin(@) force is just any other force at that point, so I can multiply is by cos(@) to get the component that is parallel to a horizontal line. But from what I've been able to find, the actual horizontal component should be mg*tan(@).

Could someone give me an explanation for this, or point me in the right direction? I'm having trouble searching for an answer because I'm not really sure what to call this horizontal force (thus the somewhat confused title of this post.)

Thanks.
 
Physics news on Phys.org
the weight is mg,when you split that into its components that are perpendicular and parallel to the plane, you will see that parallel to the plane is mgsinθ and perpendicular is mgcosθ. Does it make more sense now?

Did you mean horizontal and vertical with respect the incline or with respect to the horizontal that the angle is measured from?
 
Horizontal with respect to the horiztonal base. So, the weight is directed vertically downward. Some of that weight (wgcosθ) is normal to the plane, while the rest (wgsinθ) is parallel to it. Now, some of that parallel component is directed vertically, and some is directed horizontally. I'm trying to figure out what the horizontal component is.

In other words, what portion of mg is perpendicular to the original weight vector?
 
I see, in your diagram (if you have one) if you draw a line parallel to the horizontal through the mass you will see that the angle made by the plane and the drawn line is also θ.

So the mgcosθ, is split into vertical and horizontal components as well. You should now be able to find the components now. It looks like your initial thinking is correct.
 
I always think of it like this: if the object pulled or push is slanted on an angle, then the gravitational force and the normal force will both be mgcostheta but just opposite in direction, and if the object pushed or pulled is on a horizontal surface for example if one of the fat dudes at like home depot are pulling stuff and pushing stuf at an angle to move it, then the gravitational force and the normal force will be mgsintheta but in opposite dircetions. make sense?
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...