amcavoy
- 663
- 0
I have the following to solve:
\frac{dx}{dt}=-\alpha xy;\quad y=y_0e^{-\beta t};\quad x(0)=x_0
I separate variables and come up with:
\frac{dx}{x}=-\alpha y_0e^{-\beta t}dt
\ln{x}=-\alpha y_0\int e^{-\beta t}dt=\frac{\alpha y_0}{\beta}e^{-\beta t}+C
...so for a final answer I come up with:
x=x_0\exp{\left(\frac{\alpha y_0}{\beta}e^{-\beta t}\right)}
..however the book says that the answer is:
x=x_0\exp{\left(\frac{-\alpha y_0\left(1-e^{-\beta t}\right)}{\beta}\right)}
I cannot find where I went wrong, any ideas?
Thanks a lot.
\frac{dx}{dt}=-\alpha xy;\quad y=y_0e^{-\beta t};\quad x(0)=x_0
I separate variables and come up with:
\frac{dx}{x}=-\alpha y_0e^{-\beta t}dt
\ln{x}=-\alpha y_0\int e^{-\beta t}dt=\frac{\alpha y_0}{\beta}e^{-\beta t}+C
...so for a final answer I come up with:
x=x_0\exp{\left(\frac{\alpha y_0}{\beta}e^{-\beta t}\right)}
..however the book says that the answer is:
x=x_0\exp{\left(\frac{-\alpha y_0\left(1-e^{-\beta t}\right)}{\beta}\right)}
I cannot find where I went wrong, any ideas?
Thanks a lot.