How can we compute dx in terms of R and θ in this given right triangle?

AI Thread Summary
To compute dx in terms of R and θ in the context of a right triangle, the relationship dx = (R/cos^2 θ) dθ is derived from trigonometric principles. The triangle's legs are defined by lengths x and R, with angle θ opposite to x. The user attempted to relate R and x using R tan(θ + dθ) = x + dx but found it unhelpful. The discussion emphasizes the need to express x in terms of R and θ for clarity. Understanding these relationships is crucial for solving the electric field problem effectively.
quantum13
Messages
65
Reaction score
0

Homework Statement


This is part of a find the electric field problem. I've narrowed down the part I find confusing.

Consider a right triangle, with legs of length x and R. Angle θ is opposite x. Leg x is a segment of a ray starting where lines x and R intersect. There is a differential length dx along line x (it is at a vertex of the right triangle). Find dx in terms of R and θ.

Homework Equations


standard trig functions, pythagorean theorem?

The Attempt at a Solution


The answer according to the solutions manual is dx = (R/cos^2 θ) dθ. Obviously, I cannot understand at all where that came from.

I did get R tan ( θ + dθ) = x + dx but that isn't very helpful either
 
Last edited:
Physics news on Phys.org
It sounds like R is fixed, while x and θ can vary.

Can you write an expression for x in terms of R and θ?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top