How do I find the maximum compression of a spring?

AI Thread Summary
To find the maximum compression of the spring, the conservation of energy principle is applied, where the kinetic energy of the crate is converted into elastic potential energy stored in the spring. The spring constant can be determined from the initial compression of 0.10m under a 5.0N force. The kinetic energy of the crate, calculated using the formula Ek = 0.5(mv)^2, is then equated to the elastic potential energy E = ky^2/2. By solving for the displacement y, the maximum compression of the spring can be determined. This approach effectively combines the concepts of energy conservation and spring mechanics.
lustish
Messages
1
Reaction score
0

Homework Statement


A linear elastic spring can be compressed 0.10m by an applied force of magnitude 5.0N. A 4.5kg crate, moving at 2.0m/s, collides with this spring. What will be the maximum compression of the spring?

x= 0.10kg
F= 5.0N
m= 4.5kg
v= 2.0m/s


Homework Equations


I'm not really sure, but I think that this is a law of conservation of energy problem...
E = E'
Eg+Ek+Ee=(Eg+Ek+Ee)'

Ek=0.5(mv)^2


The Attempt at a Solution


I'm just really lost. Any help would be greatly appreciated!
 
Physics news on Phys.org
This is indeed a problem of conservation of energy.

As the crate collides with the spring, at some point all the kinetic energy of the crate will have been transferred to the spring. The mathematical expression for energy stored in a spring is E=ky^2/2 where k is the "spring constant" (don't know this in english), and y is the displacement/compression of the spring.

You can find the spring constant from the first part of the problem, where you are told how much the spring compresses when compressed by a given amount of force. When you have k and have calculated the kinetic energy of the crate, you can solve for y.

Good luck!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top