latentcorpse
- 1,411
- 0
Define B( \theta, \vec{n} ) \in SL( 2 , \mathbb{C} ) by
B( \theta , \vec{n}) = \cosh { \frac{1}{2} \theta} + \vec{\sigma} \cdot \vec{n} \sinh{ \frac{1}{2} \theta} where \vec{n}^2 =1
Show that this corresponds to a Lorentz boost with velocity \vec{v}=\tanh{ \theta} \vec{n}. Show that
( 1 + \frac{1}{2} \vec{sigma} \cdot \delta \vec{v}) B(\theta, \vec{n}) = B( \theta' , \vec{n}' ) R
where, to 1st order in \delta \vec{v},
\theta' = \theta + \delta \vec{v} \cdot \vec{n}, \vec{n}'=\vec{n} \coth{\theta} (\delta \vec{v} - \vec{n} \vec{n} \cdot \delta \vec{v})
and R is an infinitesimal rotation given by
R= 1 + \tanh{\frac{1}{2} \theta} \frac{1}{2}i ( \delta \vec{v} \times \vec{n} ) \cdot \vec{\sigma} = 1 + \frac{\gamma}{\gamma + 1} \frac{1}{2} i ( \delta \vec{v} \times \vec{v} ) \cdot \vec{\sigma}
and \gamma = ( 1 - \vec{v}^2) ^{-\frac{1}{2}}
Show that \vec{v}' = \vec{v} + \delta \vec{v} - \vec{v} \vec{v} \cdot \delta \vec{v}
Note that \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \vec{b} = \vec{a} \cdot \vec{b} 1 + i \vec{\sigma} \cdot ( \vec{a} \times \vec{b} )I don't understand how to go about the first bit here - what do I need to do in order to show this is a Lorentz boost?
Thanks!
B( \theta , \vec{n}) = \cosh { \frac{1}{2} \theta} + \vec{\sigma} \cdot \vec{n} \sinh{ \frac{1}{2} \theta} where \vec{n}^2 =1
Show that this corresponds to a Lorentz boost with velocity \vec{v}=\tanh{ \theta} \vec{n}. Show that
( 1 + \frac{1}{2} \vec{sigma} \cdot \delta \vec{v}) B(\theta, \vec{n}) = B( \theta' , \vec{n}' ) R
where, to 1st order in \delta \vec{v},
\theta' = \theta + \delta \vec{v} \cdot \vec{n}, \vec{n}'=\vec{n} \coth{\theta} (\delta \vec{v} - \vec{n} \vec{n} \cdot \delta \vec{v})
and R is an infinitesimal rotation given by
R= 1 + \tanh{\frac{1}{2} \theta} \frac{1}{2}i ( \delta \vec{v} \times \vec{n} ) \cdot \vec{\sigma} = 1 + \frac{\gamma}{\gamma + 1} \frac{1}{2} i ( \delta \vec{v} \times \vec{v} ) \cdot \vec{\sigma}
and \gamma = ( 1 - \vec{v}^2) ^{-\frac{1}{2}}
Show that \vec{v}' = \vec{v} + \delta \vec{v} - \vec{v} \vec{v} \cdot \delta \vec{v}
Note that \vec{\sigma} \cdot \vec{a} \vec{\sigma} \cdot \vec{b} = \vec{a} \cdot \vec{b} 1 + i \vec{\sigma} \cdot ( \vec{a} \times \vec{b} )I don't understand how to go about the first bit here - what do I need to do in order to show this is a Lorentz boost?
Thanks!