How Do Suspended Charged Spheres Behave?

AI Thread Summary
The discussion focuses on the behavior of two charged spheres suspended from a common point, addressing their electrostatic interaction when given the same charge. It explains that the electrostatic force acting on the spheres equals the gravitational force component, expressed as mgtan(theta). The approximation of tan(theta) as d/2L is justified for small angles, with a noted percent error if d is L/10. The conversation culminates in deriving the relationship for charge using Coulomb's law, leading to the formula abs(q) = sqrt((mgd^3)/(2kL)). The thread highlights the interplay between electrostatics and geometry in analyzing the system.
Nevok
Messages
2
Reaction score
0

Homework Statement


This is a long one...
Two small spheres with mass m are suspended with insulating threads of length L from a common point. Uncharged, the spheres hang so they touch each other. When given the same charge q they repel each other and hang d distance apart. Assume d is pretty small when compared to L but not the the diameter of the spheres.

a) Explain, using a net force diagram, why the magnitude of the electrostatic force F_e acting on the spheres must be equal to mgtan(theta)

b) Explain why in this situation we can approximate tan(theta) as d/2L and what the percent error if d=L/10

c)Combine the answers to part a and b with Coulombs law to show that abs(q)= sqrt((mgd^3)/(2kL))
L=70cm, d=4.0cm m=0.4g

Homework Equations


Coulombs law, F_e=(k(q_1*q_2))/r^2.

The Attempt at a Solution


Well, I have part a, but i have no clue about why you could do that approximation.
 
Last edited:
Physics news on Phys.org
Hello nevok. For really small angles, \sin \theta \approx \tan \theta
 
Thanks, with that and a little bit of thinking I solved it.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top