How Do You Solve Heat Conduction in a Sphere with Fixed Boundary Temperature?

genius2687
Messages
11
Reaction score
0
A solid sphere of radius a is immersed in a vat of fluid at a temperature T_0. Heat is conducted into the sphere according to

dT/dt = D(d^2T/dr^2)
(d-> partial derivative btw)

If the temperature at the boundary is fixed at T_0 and the initial temperature of the sphere is T_1, find the temperature within the sphere as a function of time.

My reasoning

Ok. Here's my reasoning. Use a solution of the form T=X(t)R(r), and plug into the above equation to get

R''/R=X/(DX')=-k^2.

I get X(t) = C*[exp(-t/(D*k^2))]. (k^2>0 for convergence)

Then I have R'' +k^2*R = 0

so R= Acos(kr) + Bsin(kr), since k^2>0.

The Problem

Assuming that the above steps are right, we could set the boundary conditions and have Acos(ka)+Bsin(ka)=T_0. That only eliminates one variable, either A or B. I don't know where to go from there however. Should this be like a Fourier series or something?
 
Physics news on Phys.org
The Laplacian in spherical coords is not d^2T/dr^2.
It is \frac{1}{r}\left[\partial_r^2(rT)\right]
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top