rar0308
- 55
- 0
Problem10.1, Introductory QM,Liboff.
If \psi (\mathbf{r},t) is a free-particle state and b(\mathbf{k},t) the momentum probability amplitude for this same state, show that
\iiint \psi^* \psi d \mathbf{r}=\iiint b^* b d \mathbf{k}
\psi_\mathbf{k} (\mathbf{r},t) = Ae^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} (10.14)
\hbar \omega = E_k
\delta (\mathbf{r} - \mathbf{r'}) = \frac{1}{(2 \pi)^3} \iiint e^{i \mathbf{k} \cdot (\mathbf{r} - \mathbf{r'})} d \mathbf{k} (10.20)
d \mathbf{k} = dk_x dk_y dk_z
\psi (\mathbf{r},t)=\frac{1}{(2 \pi)^{3/2}}\iiint b(\mathbf{k},t)e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} d \mathbf{k} (10.22)
b(\mathbf{k},t) = \frac{1}{(2 \pi)^{3/2}}\iiint\psi (\mathbf{k},t) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} d \mathbf{r} (10.23)
d \mathbf{r}=dxdydz
1.I substituted eq 22 into left-hand side of problem's equation. Then I don't know how to go further. I think there will be some manipulation on the equation but I'm lacking some knowledge how to do it.
Homework Statement
If \psi (\mathbf{r},t) is a free-particle state and b(\mathbf{k},t) the momentum probability amplitude for this same state, show that
\iiint \psi^* \psi d \mathbf{r}=\iiint b^* b d \mathbf{k}
Homework Equations
\psi_\mathbf{k} (\mathbf{r},t) = Ae^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} (10.14)
\hbar \omega = E_k
\delta (\mathbf{r} - \mathbf{r'}) = \frac{1}{(2 \pi)^3} \iiint e^{i \mathbf{k} \cdot (\mathbf{r} - \mathbf{r'})} d \mathbf{k} (10.20)
d \mathbf{k} = dk_x dk_y dk_z
\psi (\mathbf{r},t)=\frac{1}{(2 \pi)^{3/2}}\iiint b(\mathbf{k},t)e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} d \mathbf{k} (10.22)
b(\mathbf{k},t) = \frac{1}{(2 \pi)^{3/2}}\iiint\psi (\mathbf{k},t) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} d \mathbf{r} (10.23)
d \mathbf{r}=dxdydz
The Attempt at a Solution
1.I substituted eq 22 into left-hand side of problem's equation. Then I don't know how to go further. I think there will be some manipulation on the equation but I'm lacking some knowledge how to do it.
Last edited: