How Does Resistivity Vary in a Conical Material with Changing Dimensions?

AI Thread Summary
The discussion focuses on calculating the resistivity of a conical material with a variable radius and resistivity function. The resistivity is defined as rho=(6*10^6)*x^4, and the radius varies linearly from 3 cm to 8.4 cm along the x-axis. The initial attempt at calculating resistance used an incorrect formula for the cross-sectional area, leading to confusion about the integration process. The correct approach identifies the cross-sectional area as A=π*r^2, with r varying linearly with x. The integration of the resistivity function with the correct area yields a more accurate resistance calculation.
DrIxn
Messages
13
Reaction score
0

Homework Statement


A piece of conically-shaped material is placed in a circuit along the x-axis. The resistivity of this material varies as rho=(6*10^6)*x^4 (where x is measured in meters and rho is measured in ohm*meters), and its radius varies linearly as a function of x, ranging from r1=xinitial=3 cm to r2=xfinal=8.4 cm.


Homework Equations


R=rho*L/A


The Attempt at a Solution



Well current is flowing through the cone section so the cross sectional area is a circle, with the radius increasing proportional to x, in fact the are equal.

So dR=rho*dx/(2*pi*r) and dx=dr and x=r so plugging in for r

dR=(6*10^6)*r^4/(2*pi*r) dr = (3/pi * 10^6)*r^3 dr

which integrating from 0.03 to 0.084 m i got 11.69 Ohm, doesn't seem quite right did I mess up somewhere?
 
Physics news on Phys.org
You sure that ##A = 2 \pi r## ?
 
Would it be something else? A bunch of little rings expanding out would make a circle yes?
 
DrIxn said:
Would it be something else? A bunch of little rings expanding out would make a circle yes?

Shouldn't A be the cross-sectional area of the cone? It didn't appear that you were integrating in the radial direction...
 
Okay so the cross sectional area would be a circle, A=pi*r^2 , and since r varies linearly with the length of the cone A=pi*x^2

And integrating with respect to x..

(6/pi*10^6)*x^2 dx from xi to xf?
 
DrIxn said:
Okay so the cross sectional area would be a circle, A=pi*r^2 , and since r varies linearly with the length of the cone A=pi*x^2

And integrating with respect to x..

(6/pi*10^6)*x^2 dx from xi to xf?

Yup, that looks better.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
10K
Replies
6
Views
3K
Replies
1
Views
1K
Replies
16
Views
5K
Back
Top