cyboman said:
From my understanding of the system, the MCAS and/or/with the automatic stall prevention system do pitch the nose of the aircraft down.
I've already explained repeatedly what the system does and under what circumstances the nose will in fact go down. So have others. But I'll try once more.
The fundamental error you are making with regard to MCAS is to confuse trim adjustments with pitch commands. Trim adjustments are made for the purpose of changing the force required to hold the yoke at a particular point in its travel. They are not made for the purpose of changing the plane's pitch attitude. It is possible for the plane's pitch attitude to change as the result of a trim adjustment,
if the pilot does not adjust the force he is exerting on the yoke. But that is a side effect of the trim adjustment; it's not the primary purpose of the trim adjustment.
cyboman said:
It was implemented in order to deal with the changed aerodynamics of the plane due to the larger engines which cause a positive pitch attitude - they cause the aircraft nose to rise.
This is oversimplified. The pitch up moment due to the new engines (it's not just that they're larger, they're also further forward) is not constant; it depends on airspeed and angle of attack. We already know the MCAS trim adjustment depends on angle of attack; I would expect it to depend on airspeed as well. (And possibly on other conditions like angle of bank, since that will affect the stall speed.)
cyboman said:
This can cause a stall under normal operating conditions with a pilot without special training for the changed aerodynamics of the plane. It may provide force feedback to warn the pilot as a secondary effect, but it's primary effect and role is to change the aerodynamics of the aircraft by adjusting trim and in effect pushing the nose down.
No, you have this backwards. The primary purpose is to provide force feedback to the pilot as a function of airspeed and angle of attack that is similar to previous 737s. That's how the need for special training was to be avoided. That's why it uses the trim system, since, as noted above, the trim system's primary purpose is to change the yoke force as a function of yoke travel. Pushing the nose down, if it happens, is a secondary effect, as I've already said.
If the primary purpose of MCAS were to "change the aerodynamics of the plane" (which I think is a misleading way of looking at it anyway) and force the nose down, it would function more like automatic stall prevention in a fly-by-wire system: if it detected that the plane was too close to a stall, it would simply override the pilot's input and use the yoke control system to force the nose down--i.e., it would force the yoke to a different position than the pilot wants to put it. But it doesn't do that.