How to Modify Fourier's Heat Conduction Equation for a Finite Body?

debjit625
Messages
40
Reaction score
0

Homework Statement


This is the question as it was given...no other data was given.
Obtain Fourier's heat conduction equation in three dimensions in an infinite medium in steady state.What modifications will be required in case of a finite body?

2. The attempt at a solution
Well I can derive 3D Fourier's heat conduction equation not a problem,
∂u/∂t = h ∇2u (without radiation losses )
and at steady state it will be ∇2u = 0
here u(x,y,z,t) is temperature and h is thermal diffusivity.

But what I don't get is infinite medium and the finite body , will the finite body will have radiation losses ?,it has to do something with boundary conditions may be.I don't get the question properly ,please help me understanding it.

Thanks
 
Physics news on Phys.org
Indeed, for finite body one has to include boundary conditions, e.g. no heat flow through the boundary or constant temperature at the boundary.
 
Even though, for a finite body, the boundary conditions need to be included in solving the steady state heat conduction equation, the equation itself does not change.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top