I get two different answers. Which one is correct?

  • Thread starter Thread starter carloz
  • Start date Start date
  • Tags Tags
    Uncertainty
AI Thread Summary
The discussion revolves around calculating the uncertainty in the expression M = (a-b)/2 + a, given specific values for a and b, along with their uncertainties. The initial attempt at a solution incorrectly applies the error propagation formula, questioning the independence of errors in a and b. A suggestion is made to simplify the expression to (3a-b)/2, allowing for a more straightforward application of error propagation rules without concern for the dependency of errors. Two methods for calculating the uncertainty in M yield different results, highlighting the complexity of error propagation in dependent variables. The conversation emphasizes the importance of correctly applying error propagation techniques in mathematical expressions.
carloz
Messages
4
Reaction score
0

Homework Statement



M = (a-b)/2 + a

a = 15
b=5

What is the uncertainty in M if the uncertainty in a and b is ±0.7?


Homework Equations



for c = a + b
Error in c =√[(error in a)^2 + (error in b)^2]

The Attempt at a Solution



Error in M = √[0.7^2 * 3] = 1.2124

The problem I am having is that we learn that the above formula can only work when the errors are independent of one another. the error in a is obviously not independent of the error in a. so i think I'm wrong.

What do you think?

Thank you.
 
Physics news on Phys.org
If I remember correctly, the errors work like this:

s= a+b ⇒ Δs=Δa + Δb

s= a-b ⇒ Δs= Δa + Δb

s=ab ⇒ Δs/s = Δa/a + Δb/b

So you can apply the first two as needed.
 
yes. but that only works when the uncertainties in a and b are independent. however in my equation for M, a appears twice. since the error of a is not independent of a, how do i go about finding the uncertainty?

thanks.
 
Why not just simplify your problem

(a-b)/2+a

into

(3a-b)/2

and then use the rules for the error of 3a+b. You don't need to worry about the independency of error a to error a.
This way I get

(3 Δa + Δb)/2 = 1.4

Or using the other rule [ √(Δa2 + Δb2) ]

( √(9*Δa2 + Δb2) ) / 2 ≈ 1.1068
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top