If a bond breaking absorbs energy, why does ATP hydrolysis release it?

AI Thread Summary
ATP hydrolysis releases a significant amount of energy primarily due to two key factors: the breaking of the phosphodiester bond between the terminal phosphate and ADP, and the resulting changes in electrostatic interactions and entropy. When the bond is broken, it alleviates the electrostatic repulsion between negatively charged phosphate groups, making the reaction enthalpically favorable. Additionally, the reaction is entropically favorable because cells maintain a high ATP/ADP ratio. It is important to note that the Pi-ADP bond is not accurately described as "storing" energy; instead, it is characterized as unstable with high potential energy. The hydrolysis process leads to the formation of more stable bonds, resulting in energy release. The weak P-O-P bond in ATP prevents spontaneous hydrolysis, requiring catalysts for the reaction to occur efficiently.
jaumzaum
Messages
433
Reaction score
33
Hi. We know that bond formation releases energy and bond break absorbs energy. I still don't figure out why ATP hydrolysis (that breaks a bond between oxygen and phosphorous) releases energy, and it releases a LOT.
 
Chemistry news on Phys.org
Is bond breakage the only thing that occurs during the hydrolysis of ATP? Consider the other reactants involved in the reaction.
 
Hello @Ygggdrasil
You mean the hydroxyl group formation?
I would say the reaction is something like this (I suppressed part of the molecule, and I don't know if Pi and ADP are ionized)
P-O-P + H-O-H -> P-O-H + H-O-P
I really forgot the other reactants. So there is 2 P-O and 2 O-H broken,, and 2 P-O and 2 O-H formed. That confused me even more rsrsrsrs. Didnt the energy released have to be near zero?
Also majority of the books says that there is a huge amount of energy "stored" in the Pi-ADP bound. Is that correct to say? For me bounds don't store energy, they require energy to be broken.
 
Essentially, there are two effects going on.
1) Breaking a phosphodiester bond between the Pi and ADP to form a new P-OH bond. Although the bonds being broken are somewhat chemically similar, this step is enthalpically favorable in large part because you are relieving the electrostatic repulsion between the negative charge on the terminal gamma phosphate and the neighboring two negatively charged phosphate groups in ATP.

2) The reaction is also entropically favorable because the cell maintains a relatively high ATP/ADP ratio.

I would agree with you that it is incorrect to say that the Pi-ADP bond stores energy. It is more correct to say that the Pi-ADP bond is a very unstable bond (high potential energy), so breaking that bond and replacing it with another more stable bond (low potential energy) results in the release of energy. In organic chemistry terms, the gamma phosphate is a good leaving group.
 
  • Like
Likes jim mcnamara
Right.
You would need a bond to store energy well.
You might accumulate even more energy by breaking bonds completely.
This might give you a free radical of .PO(OH)2.
But the problem with completely breaking bonds is that free radicals are too reactive and too easily liable to spontaneous and unwanted reactions.
The weak P-O-P bond hampers spontaneous formation of new bonds. Hydrolysis releases a lot of energy by forming new and stronger bonds, but the initial weaker bond hampers spontaneous formation of new bonds, so that ATP hydrolyses under influence of catalysts but not spontaneously.
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
I'm trying to find a cheap DIY method to etch holes of various shapes through 0.3mm Aluminium sheet using 5-10% Sodium Hydroxide. The idea is to apply a resist to the Aluminium then selectively ablate it off using a diode laser cutter and then dissolve away the Aluminium using Sodium Hydroxide. By cheap I mean resists costing say £20 in small quantities. The Internet has suggested various resists to try including... Enamel paint (only survived seconds in the NaOH!) Acrylic paint (only...
Back
Top