Impulse Momentum Theorem and space probe

AI Thread Summary
The discussion revolves around two physics problems involving the impulse-momentum theorem and conservation of energy. For the first problem, a space probe's momentum is affected by a retrorocket's force, and the user learns to account for the negative direction of the force to find the final momentum. In the second problem, a student falls and comes to rest upon impact, leading to confusion about applying conservation of energy principles. The user is guided to first calculate the velocity just before impact using impulse-momentum, which can then be used to determine the gravitational potential energy. The conversation emphasizes understanding the relationship between momentum, force, and energy in solving these problems.
shaka23h
Messages
38
Reaction score
0
Hi, I'm kinda lost on these 2 problems.

A space probe is traveling in outer space with a momentum that has a magnitude of 7.15 x 107 kg·m/s. A retrorocket is fired to slow down the probe. It applies a force to the probe that has a magnitude of 1.81 x 106 N and a direction opposite to the probe's motion. It fires for a period of 9.56 s. Determine the momentum of the probe after the retrorocket ceases to fire.

On this first question I have no idea if I'm going to have to find the mass and than use the impulse momentum theorem? If so how would I go about finding the mass for it?



A student (m = 65 kg) falls freely from rest and strikes the ground. During the collision with the ground, he comes to rest in a time of 0.017 s. The average force exerted on him by the ground is +15000 N. From what height did the student fall? Assume that the only force acting on him during the collision is that due to the ground.


On this problem I think I'm suppose to apply the constant acceleartion equation to it? But I have no idea how to find the t in this problem. I don't think the 0.017s is the T that I'm suppose use?


Any help would be greatly appreciate it
 
Physics news on Phys.org
shaka23h said:
Hi, I'm kinda lost on these 2 problems.

A space probe is traveling in outer space with a momentum that has a magnitude of 7.15 x 107 kg·m/s. A retrorocket is fired to slow down the probe. It applies a force to the probe that has a magnitude of 1.81 x 106 N and a direction opposite to the probe's motion. It fires for a period of 9.56 s. Determine the momentum of the probe after the retrorocket ceases to fire.

On this first question I have no idea if I'm going to have to find the mass and than use the impulse momentum theorem? If so how would I go about finding the mass for it?
Do you really need to know that mass? What is the impulse equal to?


A student (m = 65 kg) falls freely from rest and strikes the ground. During the collision with the ground, he comes to rest in a time of 0.017 s. The average force exerted on him by the ground is +15000 N. From what height did the student fall? Assume that the only force acting on him during the collision is that due to the ground.


On this problem I think I'm suppose to apply the constant acceleartion equation to it? But I have no idea how to find the t in this problem. I don't think the 0.017s is the T that I'm suppose use?
Think about conservation of energy. What must the velocity be just before the impact? What's the kinetic energy at this point?
 
Ok Mr. Advisor,

Thanks to your help I figured out what i was doing wrong on my first problem. I didn't take into consideration that the opposite direction accounts for a negative value. I know that Impulse = Change in momentum which is also equal to net force x change in time. After finding the impulse I added the initial momentum value to it and found my final momentum. :) thanks a lot.



I am still having trouble on number 2 because I don't know how to apply the conservation of energy principle to this problem because thi swas in the impulse-momentum chapter. I could not find a equation in this chapter that would allow me to find the distance of anything. Maybe I'm just stupid or just thinking it wrong. I'm thinking this problem as a free fall problem yet when I looked at that equation it didn't seem very logical either. :(
 
Last edited:
shaka23h said:
Ok Mr. Advisor,

Thanks to your help I figured out what i was doing wrong on my first problem. I didn't take into consideration that the opposite direction accounts for a negative value. I know that Impulse = Change in momentum which is also equal to net force x change in time. After finding the impulse I added the initial momentum value to it and found my final momentum. :) thanks a lot.
Sounds good to me. There's no need for the Mr. Advisor (I'm not a teacher :cool: ), Hoot will do. And welcome to the Forums.
shaka23h said:
I am still having trouble on number 2 because I don't know how to apply the conservation of energy principle to this problem because thi swas in the impulse-momentum chapter. I could not find a equation in this chapter that would allow me to find the distance of anything. Maybe I'm just stupid or just thinking it wrong. I'm thinking this problem as a free fall problem yet when I looked at that equation it didn't seem very logical either. :(
Okay, firstly you can use impulse/momentum to find the velocity of the student just before the collision, yes? Now, with this information you can find the kinetic energy of the student just before the collision. As we are ignoring drag what can you say about the (gravitational) potential energy of the student before he/she fell?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top