- 5,848
- 552
Homework Statement
Given that the vectors \underset{A}{\rightarrow} and \underset{B}{\rightarrow} are parallel transported along a curve:
\triangledown _{\underset{l}{\rightarrow}}A = 0
\triangledown _{\underset{l}{\rightarrow}}B = 0
Show that g(A,B) = constant along the curve
Homework Equations
The Attempt at a Solution
I just have one major question for this problem: can one say that if the covariant derivative of g(A,B) = 0 then g(A,B) = constant i.e. if
\triangledown _{\underset{l}{\rightarrow}}(g(A,B)) = \triangledown _{\underset{l}{\rightarrow}}(g_{\alpha \beta }A^{\alpha }B^{\beta }) = A^{\alpha }B^{\beta }\triangledown _{\underset{l}{\rightarrow}}g_{\alpha \beta } + g_{\alpha \beta }B^{\beta }\triangledown _{\underset{l}{\rightarrow}}A^{\alpha} + g_{\alpha \beta }A^{\alpha }\triangledown _{\underset{l}{\rightarrow}}B^{\beta } = 0
then g(A,B) = const. for the curve?