Insulating charged sphere in conducting shell and electric field

AI Thread Summary
The discussion revolves around calculating the electric field between a charged insulating sphere and a concentric conducting shell. The solid sphere has a radius of 12.8 cm and a charge of 9.00×10^-6 C, while the conducting shell has an equal but opposite charge. Participants emphasize the importance of using Gauss's Law to find the electric field, rather than relying on charge density. The incorrect approach involved using the charge density instead of the total enclosed charge. Ultimately, the correct method simplifies the problem by directly applying the given charge.
kyle9316
Messages
2
Reaction score
0
1. A solid sphere of radius a = 12.8 cm is concentric with a spherical conducting shell of inner radius b = 37.1 cm and outer radius c = 39.1 cm. The sphere has a net uniform charge q1 = 9.00×10-6 C. The shell has a net charge q2 = -q1. Find expressions for the electric field, as a function of the radius r, between the sphere and the shell (a < r < b). Evaluate for r = 25.0 cm.


2. ∫E.dA = Q/ε0
ρ = Q/Volume



3. OK, so I have the charge density of the insulting sphere, which I'm calling ρ. My Gaussian surface is a sphere, so it's area in this case would be 4∏(0.25m)^2
I know how to find the electric field inside of the insulating sphere, but not between the insulating sphere and the conducting shell, which is what this problem is asking for. I tried ignoring the conducting shell and just using the equation:
E = (ρa^2)/(3ε0r^2)
It's telling me that the answer is wrong. What am I doing wrong? I assume it has something to do with the charge on the inner surface of the conducting shell, but I don't know what to do with that.
 
Physics news on Phys.org
kyle9316 said:
1. A solid sphere of radius a = 12.8 cm is concentric with a spherical conducting shell of inner radius b = 37.1 cm and outer radius c = 39.1 cm. The sphere has a net uniform charge q1 = 9.00×10-6 C. The shell has a net charge q2 = -q1. Find expressions for the electric field, as a function of the radius r, between the sphere and the shell (a < r < b). Evaluate for r = 25.0 cm. 2. ∫E.dA = Q/ε0
ρ = Q/Volume
3. OK, so I have the charge density of the insulting sphere, which I'm calling ρ. My Gaussian surface is a sphere, so it's area in this case would be 4∏(0.25m)^2
I know how to find the electric field inside of the insulating sphere, but not between the insulating sphere and the conducting shell, which is what this problem is asking for. I tried ignoring the conducting shell and just using the equation:
E = (ρa^2)/(3ε0r^2)
It's telling me that the answer is wrong. What am I doing wrong? I assume it has something to do with the charge on the inner surface of the conducting shell, but I don't know what to do with that.


Hi Kyle,welcome to PF.

The equation in red is wrong. Why do you use the charge density instead of Gauss Law with the enclosed charge q1=9.00×10-6 C?

ehild
 
Thanks! I guess I was overthinking. Instead of using the whole Q = (4/3)πr^2*ρ, I just had to use the charge given to me.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top