I have to find: [tex]\int_{0}^{2\pi}\sqrt{t^2+2} dt[/tex](adsbygoogle = window.adsbygoogle || []).push({});

I found that [tex]\int \sqrt{t^2+2} dt = \frac{t\sqrt{t^2+2}}{2} - arcsin(\frac{t}{\sqrt{2}}) + c[/tex]

But when I fill in [tex]2\pi[/tex] I get: [tex]\frac{2\pi \sqrt{4\pi ^2+2}}{2}- arcsin(\frac{2\pi }{\sqrt{2}})[/tex]

but [tex]arcsin(\frac{2\pi }{\sqrt{2}})[/tex] doesn't exist..

Have I done something wrong?

Problem solved!

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Integral over [0,2pi]

**Physics Forums | Science Articles, Homework Help, Discussion**