1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Integral over [0,2pi]

  1. Aug 12, 2010 #1
    I have to find: [tex]\int_{0}^{2\pi}\sqrt{t^2+2} dt[/tex]

    I found that [tex]\int \sqrt{t^2+2} dt = \frac{t\sqrt{t^2+2}}{2} - arcsin(\frac{t}{\sqrt{2}}) + c[/tex]

    But when I fill in [tex]2\pi[/tex] I get: [tex]\frac{2\pi \sqrt{4\pi ^2+2}}{2}- arcsin(\frac{2\pi }{\sqrt{2}})[/tex]

    but [tex]arcsin(\frac{2\pi }{\sqrt{2}})[/tex] doesn't exist..

    Have I done something wrong?


    Problem solved!
     
    Last edited: Aug 12, 2010
  2. jcsd
  3. Aug 12, 2010 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    I think you mean arcsinh rather than arcsin, don't you?
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook