thenewbosco
- 185
- 0
hello, i just wish to check that i have done the following correctly:
1. Evaluate \int d\overarrow{r} (r is a vector, and its a closed integral) around the circle C represented by x^2 + y^2 = a^2
what i did here was switch to polars and called d\overarrow{r} ->rd\theta then i noted that r=a and integrated from 0 to 2pi to get the answer as 2pi * a.
and
2. If \overarrow{f} = x\hat{x} + y\hat{y} + z\hat{z}
evaluate \int \overarrow{f} \cdot d\overarrow{r} from (0,0,0) to (1,1,1) along
a) a straight line connecting these points
b) a path from (0,0,0) to (1,0,0) to (1,1,0) to (1,1,1)
for both of these i ended up getting 3/2
for a i just replaced y and z by x and dy and dz by dx and integrated 3x dx...
and for b i got 3/2 by adding up three integrals so i think this should be correct? thanks
1. Evaluate \int d\overarrow{r} (r is a vector, and its a closed integral) around the circle C represented by x^2 + y^2 = a^2
what i did here was switch to polars and called d\overarrow{r} ->rd\theta then i noted that r=a and integrated from 0 to 2pi to get the answer as 2pi * a.
and
2. If \overarrow{f} = x\hat{x} + y\hat{y} + z\hat{z}
evaluate \int \overarrow{f} \cdot d\overarrow{r} from (0,0,0) to (1,1,1) along
a) a straight line connecting these points
b) a path from (0,0,0) to (1,0,0) to (1,1,0) to (1,1,1)
for both of these i ended up getting 3/2
for a i just replaced y and z by x and dy and dz by dx and integrated 3x dx...
and for b i got 3/2 by adding up three integrals so i think this should be correct? thanks
Last edited: