Integrating Fraction Fractions: Solving \int\frac{x^{2}+2x+1}{x^{2}+1}

Cmertin
Messages
57
Reaction score
0

Homework Statement


\int\frac{x^{2}+2x+1}{x^{2}+1}

Homework Equations


INTEGRAL OF X=\frac{x^{n+1}}{n+1}
I can't get the integral to work on the left side for some reason.

The Attempt at a Solution


I have completely forgotten how to integrate fractions. I know that "log(x^2+1)+C" would be included in it though I'm not to sure where to go from there.
 
Physics news on Phys.org
\frac{x^{2}+2x+1}{x^{2}+1} = \frac{x^2 + 1}{x^2 + 1} + \frac{2x}{x^2+1}
 
snipez90 said:
\frac{x^{2}+2x+1}{x^{2}+1} = \frac{x^2 + 1}{x^2 + 1} + \frac{2x}{x^2+1}

I got it, thanks.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top