Integrating Trig Functions: Solving Trig Integration Homework

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Integration Trig
nameVoid
Messages
238
Reaction score
0

Homework Statement



I(tan^5x,x)=I(tan^2xtan^3x,x)=I((sec^2x-1)tan^3x,x)
=I(sec^2xtan^3x,x)-I(tan^3x,x)
u=tanx du=sec^2x
=I(u^3,u)-I(tan^3x,x)
=u^4/4-I(tan^3x,x)
=tan^4x/4-I(tan^2xtanx,x)
=tan^4x/4-I((sec^2x-1)tanx,x)
=tan^4x/4-I(tanxsec^2x-tanx)
=tan^4x/4-I(tanxsec^2x,x)-I(tanx,x)
y=tanx, dy=sec^2x
=tan^4x/4-I(u,u)-I(tanx,x)
=tan^4x/4-u^2/2-ln|secx|+c
tan^4x/4-tan^2x/2-ln|secx|+c


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
You have a sign error between lines 8 and 9
nameVoid said:
=tan^4x/4-I(tanxsec^2x-tanx)
=tan^4x/4-I(tanxsec^2x,x)-I(tanx,x)
 
Last edited:
I(tan^5x,x)=I(tan^2xtan^3x,x)=I((sec^2x-1)tan^3x,x)
=I(sec^2xtan^3x,x)-I(tan^3x,x)
u=tanx du=sec^2x
=I(u^3,u)-I(tan^3x,x)
=u^4/4-I(tan^3x,x)
=tan^4x/4-I(tan^2xtanx,x)
=tan^4x/4-I((sec^2x-1)tanx,x)
=tan^4x/4-I(tanxsec^2x-tanx)
=tan^4x/4-I(tanxsec^2x,x)+I(tanx,x)
y=tanx, dy=sec^2x
=tan^4x/4-I(y,y)+I(tanx,x)
=tan^4x/4-y^2/2+ln|secx|+c
tan^4x/4-tan^2x/2+ln|secx|+c

my texts solution is 1/4sec^4x-sec^2x+ln|secx|+c
 
To obtain your text's solution you can simply do what you've been doing all along. That is use the identity \tan^2x=\sec^2x-1.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top