Zeth
- 23
- 0
\int_{-2} ^2 \frac{dx}{4+x^2}
I use the trig substitution and get everything done but for some reason I can't get the answer, here's all my working:
x = 2 \tan\theta
dx = 2 \sec^2\theta
4+x^2=4(1+\tan\theta)=4\sec^2\theta
\int \frac{2\sec^2\theta d\theta}{4\sec^2\theta}
\int \frac{1}{2\sec^2\theta}d\theta
\int 2\cos^2\theta d\theta
\int (1+\cos2\theta)
\theta + \frac{\sin2\theta}{2}
[\arctan\frac{x}{2} + \frac{\sin 2 \arctan \frac{x}{2}}{2}]_{-2} ^2
which is nothing close to what am I meant to get \frac{\pi}{4}
I use the trig substitution and get everything done but for some reason I can't get the answer, here's all my working:
x = 2 \tan\theta
dx = 2 \sec^2\theta
4+x^2=4(1+\tan\theta)=4\sec^2\theta
\int \frac{2\sec^2\theta d\theta}{4\sec^2\theta}
\int \frac{1}{2\sec^2\theta}d\theta
\int 2\cos^2\theta d\theta
\int (1+\cos2\theta)
\theta + \frac{\sin2\theta}{2}
[\arctan\frac{x}{2} + \frac{\sin 2 \arctan \frac{x}{2}}{2}]_{-2} ^2
which is nothing close to what am I meant to get \frac{\pi}{4}