twoflower
- 363
- 0
Hi,
I have to find this one:
<br /> \int \frac{dx}{\sqrt{1-e^{2x}}}<br />
Is this right approach?
<br /> \int \frac{dx}{\sqrt{1-e^{2x}}} = \int \frac{e^{2x} dx}{e^{2x} \sqrt{1-e^{2x}}}<br />
Substitution:
<br /> t = \sqrt{1-e^{2x}}<br />
<br /> dt = - \frac{e^{2x}}{\sqrt{1-e^{2x}}} dx<br />
<br /> e^{2x} = 1 - t^2\\<br />
<br /> \int \frac{e^{2x} dx}{e^{2x} \sqrt{1-e^{2x}}} = - \int \frac{dt}{1-t^2} = - \int \frac{1-t}{1-t^2}dt - \int \frac{t}{1-t^2}dt <br />
Substitution:
<br /> y = 1 - t^2<br />
<br /> dy = -2t dt<br />
<br /> z = 1 + t<br />
<br /> dz = dt<br />
<br /> ... = - \int \frac{dz}{z} - \frac{1}{2} \int \frac{dy}{y} = - \ln \left(1 + \sqrt{1-e^{2x}} \right) - \frac{1}{2} \ln \left(e^{2x} \right) + C<br />
I'm afraid that the first substitution is not ok, but could someone please give me more detailed answer?
Thank you.
I have to find this one:
<br /> \int \frac{dx}{\sqrt{1-e^{2x}}}<br />
Is this right approach?
<br /> \int \frac{dx}{\sqrt{1-e^{2x}}} = \int \frac{e^{2x} dx}{e^{2x} \sqrt{1-e^{2x}}}<br />
Substitution:
<br /> t = \sqrt{1-e^{2x}}<br />
<br /> dt = - \frac{e^{2x}}{\sqrt{1-e^{2x}}} dx<br />
<br /> e^{2x} = 1 - t^2\\<br />
<br /> \int \frac{e^{2x} dx}{e^{2x} \sqrt{1-e^{2x}}} = - \int \frac{dt}{1-t^2} = - \int \frac{1-t}{1-t^2}dt - \int \frac{t}{1-t^2}dt <br />
Substitution:
<br /> y = 1 - t^2<br />
<br /> dy = -2t dt<br />
<br /> z = 1 + t<br />
<br /> dz = dt<br />
<br /> ... = - \int \frac{dz}{z} - \frac{1}{2} \int \frac{dy}{y} = - \ln \left(1 + \sqrt{1-e^{2x}} \right) - \frac{1}{2} \ln \left(e^{2x} \right) + C<br />
I'm afraid that the first substitution is not ok, but could someone please give me more detailed answer?
Thank you.