Integration: Problem Solving Tips

  • Thread starter Thread starter Freyster98
  • Start date Start date
  • Tags Tags
    Integration
Freyster98
Messages
49
Reaction score
0

Homework Statement



Integrate: dv/(14-.0003v2)

Homework Equations


The Attempt at a Solution



Not even sure where to start...just need to know what method to use.
 
Last edited:
Physics news on Phys.org
I would say answer is either trignometric or hyperbolic ...
 
i think the original function can be split into partial fractions, and each integrated separately, giving a some log function.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top