Is Isotropic Surface Roughness Assumption Valid?

Irid
Messages
207
Reaction score
1

Homework Statement


I'm studying scattering from a rough surface, and my textbook defines h(x,y) as a small vertical deviation from a flat surface. Then they proceed calculations by assuming that the height difference between two points h(x,y)-h(x',y')=some f(x-x', y-y'), i.e. it depends only on the relative position of the two points. In other words, the surface is isotropic.


2. Question
I don't see what kind of surface would ever fulfill this condition, except some very special one, like a constant inclination. If there are any bumps or dips, obviously Δh will not be the same as me move around the surface using the same bar of length (x-x')... Could anybody explain this assumption?
 
Physics news on Phys.org
I agree, it would imply that all points with rational offsets from a given point would form a plane. Are you sure that's what is being assumed, rather than some statistical relationship?
 
I'm referring to the book 'Modern X-Ray Physics'. They first assume this isotropic surface to evaluate a 4-D integral, and the statistical correlation between different points comes in later (uncorrelated surface and Gaussian correlation are treated in detail). My Prof. hinted that the isotropic assumption is valid on a scale intermediate between the rapid oscilations at atomic level and the flat surface at macroscopic distances. Apparently this is an isotropic roughness assumption, but I can't find any clear info on it :(
 
It still only makes sense to me as a statistical statement, e.g. that the probability distribution of h(x,y)-h(x',y')=some f(x-x', y-y'). Can you quote the book in some detail?
 
I think I got it figured out. The assumption in that crap book is plain wrong, but the final answer is correct, even though for a completely different reason... since the roughness is isotropic, the integral over x' over a sufficiently large distance will not depend on where x was chosen, which renders integral over x trivial. Thanks for inspiration anyway :)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top