UrbanXrisis
- 1,192
- 1
\int \frac {e^x+4}{e^x}dx =?
Here's what I did:
\int \frac {e^x+4}{e^x}dx = \int e^{-x}(e^x+4)dx
\int e^{-x}(e^x+4)dx =\int 1+4e^{-x} = x-\frac {4e^{-x+1}}{x+1}
Did I do this correctly? Is there a more simplified answer?
Here's what I did:
\int \frac {e^x+4}{e^x}dx = \int e^{-x}(e^x+4)dx
\int e^{-x}(e^x+4)dx =\int 1+4e^{-x} = x-\frac {4e^{-x+1}}{x+1}
Did I do this correctly? Is there a more simplified answer?