Is there a mistake in my calculation or in my reasoning?

Click For Summary
SUMMARY

The discussion centers around solving the differential equation y'' + 3y' + 2y = r(t) using convolution, where r(t) = u(t - 1) - u(t - 2) and initial conditions y(0) = y'(0) = 0. The user encounters discrepancies in results when calculating (f * g) and (g * f) due to incorrect integration boundaries. The correct approach involves recognizing the non-zero regions of the Heaviside functions and adjusting the limits of integration accordingly. The Laplace transform method is suggested as an alternative for a more straightforward solution.

PREREQUISITES
  • Understanding of convolution in the context of differential equations
  • Familiarity with Heaviside step functions (u(t))
  • Knowledge of Laplace transforms and their properties
  • Basic integration techniques and boundary conditions in calculus
NEXT STEPS
  • Study the properties of convolution in solving linear differential equations
  • Learn about the application of Laplace transforms for solving differential equations
  • Explore the role of Heaviside functions in piecewise-defined functions
  • Practice integration techniques with varying limits to reinforce understanding
USEFUL FOR

Students and educators in mathematics, particularly those focusing on differential equations, as well as engineers and physicists who apply these concepts in practical scenarios.

Jonas E
Messages
15
Reaction score
0

Homework Statement


y'' + 3y' + 2y = r(t),

r(t) = u(t - 1) - u(t - 2),

y(0) = y'(0) = 0.

I need to solve this by convolution, which I know is commutative. The problem is that my calculation gives (f * g) =/= (g * f). Could someone please tell me where my mistake is?


Homework Equations



(f * g) = ∫f(τ)g(t-τ)dτ, from 0 to t

The Attempt at a Solution


I split the problem into 3 cases:

First (0 < t < 1): r(t) = 0, so y(t) = 0

Second (1 < t < 2): r(t) = 1 This is where it goes wrong.

I get f(t) = 1, g(t) = e^(-t) - e^(-2t), then y = (f * g) = ∫[ e^-(t-τ) - e^-2(t-τ) ]dτ, from 1 to t = (1/2) - e^-(t-1) - (1/2)e^-2(t-1), which is the correct answer according to my textbook.

But, y = (g * f) = ∫[ e^(-τ) - e^(-2τ) ]dτ, from 1 to t = -e^(-t) + (1/2)e^(-2t) + e^(-1) - (1/2)e^(-2) =/= (f * g)

I integrated from 1 instead of 0 since r=0 for t < 1.
 
Physics news on Phys.org
I suggest you look over your integration boundaries for the second case. Think about what the convolution really means.
 
Orodruin said:
I suggest you look over your integration boundaries for the second case. Think about what the convolution really means.
I don't think I understand. I get the right answer for (g * f) if I integrate from 0 to (t - 1) instead, but I don't understand why. Could you please explain?
 
Try writing the integrals using the actual expressions for the functions instead. Where are the heaviside functions non-zero?
 
Orodruin said:
Try writing the integrals using the actual expressions for the functions instead. Where are the heaviside functions non-zero?
I have now tried that for both (f * g) and (g * f), but in both cases I get the correct answer for case 3 (t > 2), when I'm trying to solve for case 2:

(f * g) = ∫[ e^(-τ) - e^(-2τ) ] * [ u(t - τ - 1) - u(t - τ - 2)]dτ

I find that for case 2:

t - τ - 1 > 0 Λ t - τ - 2 < 0

which gives me:

t - 2 < τ < t - 1

So the integral becomes:

[ -e^(-τ) + (1/2)e^(-2τ) ] from (t - 2) to (t - 1) = e^-(t - 2) - (1/2)e^-2(t - 2) - (e^-(t - 1) - (1/2)e^-2(t - 2))

but this is correct only if t > 2, so I don't understand why I get that when I try to solve for 1 < t < 2
 
Jonas E said:
I have now tried that for both (f * g) and (g * f), but in both cases I get the correct answer for case 3 (t > 2), when I'm trying to solve for case 2:

(f * g) = ∫[ e^(-τ) - e^(-2τ) ] * [ u(t - τ - 1) - u(t - τ - 2)]dτ

I find that for case 2:

t - τ - 1 > 0 Λ t - τ - 2 < 0

which gives me:

t - 2 < τ < t - 1

So the integral becomes:

[ -e^(-τ) + (1/2)e^(-2τ) ] from (t - 2) to (t - 1) = e^-(t - 2) - (1/2)e^-2(t - 2) - (e^-(t - 1) - (1/2)e^-2(t - 2))

but this is correct only if t > 2, so I don't understand why I get that when I try to solve for 1 < t < 2

I don't see why you want to use convolutions, instead of just applying standard properties of Laplace transforms to get an easily-recognized form of inverse Laplace transform. However, if you insist on using convolutions you will have
y(t) = \int_0^t f(t - \tau) r(\tau) \, d \tau = \underbrace{\int_0^t f(t-\tau) u(\tau-1) \, d\tau}_{= I_1} -<br /> \underbrace{\int_0^t f(t-\tau) u(\tau-2) \, d\tau}_{= I_2}
For ##t \leq 1## we have ##I_1 = 0## because the ##u##-factor vanishes. For ##t > 1## we have ##I_1 = \int_1^t f(t-\tau) \, d \tau##, etc. The term ##I_2## is similar.
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
982
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K