rogerl said:
In a nuclear reactor, there are as many as a thousand fuel rods. But there only appears to be a dozen or so control rods which are put amongst the thousands of fuel rods. How does this stop nuclear reaction within each rod? Or in a nuclear reactor. Do neutrons from different fuel rods hit other fuel rods at a distance and the control boron rods are supposed to block or absorb them? But how can the few control rods absorb the neutrons from thousands of fuel rods?
In a BWR, there is one control rod for four fuel assemblies. Most modern BWRs use a 10x10 array of fuel rods, but some fuel rods are part-length rather than full-length (core height), and there are 'water rods' or 'water channels' within the assembly in order to introduce water for moderation in the interior rods of the assembly. So while a 10x10 fuel assembly has 100 lattice positions, some designs have 96 rods, some 91 rods, and other 92 rods, and some of those fuel rods might be 2/3 of the full-length or core height.
The are local differences in neutron flux and power generation, which is more or less proportional to local neutron flux (we call this power peaking, and we can describe local power in terms of an average power and local peaking factor). The fuel rods in the four assemblies are most affected by the control blades, while those on the opposite side of the fuel assembly are less affected - but that is only important when the reactor is critical, and then only when the reactor is at power.
We know the control rods were inserted, which means the fission reaction shutdown, i.e. the fission reaction or power geneation went to essentially zero. However as mentioned elsewhere, there is decay heat from the beta and gamma decay of fission products, which decay well after the fission reactions stop.
Control rods contain a neutron absorber B-10 and/or Hf, which is very efficient at absorbing neutrons. The B-10 is a much better absorber of neutrons than U-235 or Pu-239, so the cores are always designed such that when the control rods are inserted, minus the strongest control rod, the core goes subcritical. Core and fuel design is a very mature technology.