Masses on table - Acceleration of Connected Objects

AI Thread Summary
The discussion focuses on solving a physics problem involving two masses on a frictionless table connected by a rope over a pulley to a hanging mass. The user outlines their approach, defining coordinates and deriving equations of motion based on forces acting on the masses. They arrive at expressions for the accelerations of each mass and validate their results through various special cases, confirming the expected behavior in each scenario. The user concludes that their calculations are correct and consistent with physical principles. The analysis effectively demonstrates the relationship between the masses and their accelerations in the system.
jbunniii
Homework Helper
Insights Author
Messages
3,488
Reaction score
257

Homework Statement


This is problem 2.9 from Kleppner and Kolenkow, 2nd edition. I think I got it right, just want to check since I'm self-studying.

Masses on table
Two masses, ##A## and ##B##, lie on a frictionless table, as shown (see my crudely drawn figure in the thumbnail :-p). They are attached to either end of a light rope of length ##l## which passes around a pulley of negligible mass. The pulley is attached to a rope connected to a hanging mass, ##C##. Find the acceleration of each mass.

Homework Equations


##F = ma##

The Attempt at a Solution


First, I chose the coordinates as follows:
* ##x## points horizontally, away from and perpendicular to the table edge
* ##y## points downward vertically

Define the positions of the objects:
* ##x_A## = horizontal position of mass ##A##
* ##x_B## = horizontal position of mass ##B##
* ##x_p## = horizontal position of movable pulley (the one to the left in the figure)
* ##y_C## = vertical position of mass ##C##
* Note that I didn't draw it very well, but the pulley to the right in the figure is fixed: it is attached rigidly to the table.

I obtained the following constraints due to the rope connections:
$$2 \ddot x_p = \ddot x_A + \ddot x_B$$
$$\ddot x_p + \ddot y_C = 0$$
Combining these, we get
$$-2 \ddot y_C = \ddot x_A + \ddot x_B$$

I then considered the forces on each mass, and on the movable pulley. Masses ##A## and ##B## each have tension ##T_1## pointing to the right (negative ##x##) due to the rope. Thus,
$$T_1 = -M_B \ddot x_B = -M_A \ddot x_A$$
Mass ##C## is acted upon by gravity downward and by tension from the second rope upward. This gives us
$$M_C g - T_2 = M_C \ddot y_C$$
The two tensions are related by the movable pulley: tension ##T_2## pulls to the right, and ##2T_1## pulls to the left. Since the pulley is massless, this gives us ##T_2 = 2T_1##.

Thus we have five equations and five unknowns. I won't go through all the algebra as it's rather ugly but routine. My answer, in case anyone has done this problem and has their solutions available to verify, is:
$$\ddot x_A = \frac{-2 M_C M_B g}{M_C M_B + M_C M_A + 4 M_B M_A}$$
$$\ddot x_B = \frac{M_A}{M_B} \ddot x_A = \frac{-2 M_C M_A g}{M_C M_B + M_C M_A + 4 M_B M_A}$$
$$\ddot y_C = -\frac{1}{2}(\ddot x_A + \ddot x_B) = \frac{(M_C M_A + M_C M_B)g}{M_C M_B + M_C M_A + 4 M_B M_A}$$

I checked several special cases:

Case 1 : ##M_C = 0##. In this case, all the accelerations are zero, as expected since nothing is pulling the system.

Case 2 : ##M_A = 0##. In this case, ##\ddot x_B = 0## (intuitively expected because the "path of least resistance" is to pull massless mass ##A## and leave mass ##B## alone), ##\ddot x_C = (M_C M_B g)/(M_C M_B) = g## (reasonable because ##C## is able to free-fall), and ##\ddot x_A = -2 (M_C M_B g) / (M_C M_B) = -2g## (reasonable since ##C## is free-falling and the movable pulley doubles the motion of ##A##).

Case 3 ##M_A = M_B = M_C##. Here the expressions reduce to ##\ddot x_A = \ddot x_B = -g/3## and ##\ddot x_C = g/3##. I guess this makes sense because gravity's force gets distributed across the three masses equally, so the acceleration of each one is one third of ##g##. I think.

Case 4 ##M_A = M_B = 0##. Here the expressions are invalid because the denominators are zero. But if we step back to the earlier equations, we get: ##T_1 = 0##, ##M_c g = M_C \ddot y_C##, hence ##\ddot y_C = g## as expected since ##C## can free-fall. Also, ##\ddot x_A + \ddot x_B = -2g## and ##\ddot x_A = \ddot x_B##, which forces ##\ddot x_A = \ddot x_B = -g##, as expected since they simply follow ##C## down.
 

Attachments

  • Kleppner2.9.png
    Kleppner2.9.png
    5.3 KB · Views: 1,231
Last edited:
Physics news on Phys.org
:thumbs: It all looks good to me.
 
  • Like
Likes 1 person
TSny said:
:thumbs: It all looks good to me.
Great, thanks!
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top