Lagrangian and Hamiltonian equations of motion

bnz23
Messages
3
Reaction score
0

Homework Statement


To try and relate the three ways of calculating motion, let's say you have a particle of some mass, completely at rest, then is acted on by some force, where F equals a constant, C, times time. (C*t).
I want to find the equations of motion using Lagrangrian, but also Newton and Hamilton

Homework Equations


I know I need L= T - V
T = 1/2mv^2, where v is x dot
This needs to be altered for the Force equation
I feel PE (V) is just mvx

The Attempt at a Solution


Then if these T and V are correct, I need to solve the DE for Lagrange. That is easy once I know my L equation is correct.
Next, Hamilton.

How would this be done with Newton's equations of motion? Simple I'm sure.

Thanks!
 
Physics news on Phys.org
If you're working in one dimension, Newton's second law is just m a = C t, where a is the acceleration. Since F = -dU/dx, we can choose U = - C t x. Then L = 1/2 m v^2 + C t x, and H = 1/2 m v^2 - C t x.
 
Thank you! That did it. All solved.
 
Back
Top